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1 Introduction

Among nonlinear hyperbolic equations, the Klein-Gordon equation has significant theo-
retical and practical importance. The nonlinear Klein-Gordon equation arises in the study
of various problems in mathematical physics. For example, this equation appears in gen-
eral relativity, nonlinear optics, plasma physics, fluid mechanics, radiation theory, and other
fields [1–3].

Cauchy problem for the wave equation

utt −∆u+mu+ ut = f(u), t > 0, x ∈ Rn, (1.1)

with initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn (1.2)

has been studied by various authors and the results obtained in this area are presented in
several monographs (see, for example, [4]). In particular, when m = 0, f(u) ∼ |u|p
the existence or absence of global solutions to problem (1.1), (1.2) has been studied by
various authors (see, for example, [5,6]). In [7,8], problem (1.1), (1.2) was studied in the
case when m = 0, f(u) ∼ |u|p, 1 < p ≤ pc = 1 + 2

n and it was proven that regardless
of how smooth and small the initial data are (u0, u1), there is no global solution to the
corresponding Cauchy problem. In [8,9], the Klein–Gordon equation was studied for m =
0, f(u) ∼ |u|p , p > pc = 1 + 2

n . And it was proved that for sufficiently small x initial
data (u0, u1), there is a global solution to problem (1.1), (1.2).

When m > 0 i.e. when there is mass in the system, posing the question this way loses
significance. The main question in this case, is to determine the stability of the potential
around standing waves [9–12].

Shafiyeva Gulshen Kh.
Baku State University, Baku, Azerbaijan
E-mail: gulshan.shafiyeva@mail.ru



124 Existence and nonexistence of global solutions ...

In [12], problem (1.1), (1.2) was studied for

p > 1, n = 2

and

1 < p <
n+ 2

n− 2
, n ≥ 3.

In [12], by studying a family of potential wells, preliminary results were obtained about
the absence of a global solution to the corresponding Cauchy problem. An exponentially
decline in energy standarts has also been identified, consistent with global decisions. Re-
cently, there has been a growing interest in studying the Cauchy problem for the systems of
Klein - Gordon equations (see [13–16,23]).

In this article we study problems of this type for m the Klein - Gordon equations with
weak nonlinear dissipation and with different masses.

It should be noted that the term weak nonlinear connection refers to a case where the in-
teraction between the desired functions is determined by the right-hand side of the equation,
given as a product of functions.

In the domain [0,∞)×Rn for the system

uitt −∆ui + qiui + γiuit = λi

m∏
j = 1
j 6= i

|uj |pj+1 |ui|pi−1 ui, i = 1, ...,m (1.3)

we consider the Cauchy problem with initial conditions

ui(0, x) = ui0(x), uit(0, x) = ui1(x), x ∈ Rn, i = 1, ...,m. (1.4)

Here are u1, ..., um functions depending on real variables t ∈ R+, x ∈ Rn,

pj ≥ 0, n = 2 (1.5)

and
m∑
j=1

pj ≤ 1, n ≥ 3. (1.6)

In this work, exploring potential wells, we study the problems of the existence and
nonexistance of global solutions.

As in [13], we will study the qualitative characteristics of the family of potential wells,
the existence and nonexistance of global solutions, the problem of unstable standing waves,
and the behavior of the energy norms of the solution at large time values. Similar problems
for Klein-Gordon systems consisting of two equations were studied in [15], and for systems
of m equations in the case pj = p, j = 1, ...,m in [22].

In what follows |·|q we denote the norm in Lq(Rn). For simplicity of notation, in par-
ticular, |·|q we will denote by | . |. The product in L2(Rn) denote by 〈., .〉. Next, we denote

the norm in Sobolev space H1 = W 1
2 (Rn) as follows ‖u‖ =

[∣∣∣|∇u|2 + |u|2
∣∣∣] 1

2 , where ∇
gradient. Constants C and c, used in this article, are positive general constants that may be
different in different cases.

For simplicity, let’s take qj = γi = λi = 1, j = 1, ...,m.
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2 Study of a potential well

Consider the following system of equations

−∆ui + ui =
m∏

j = 1
j 6= i

|uj |pj+1 |ui|pi−1 ui, i = 1, ...,m. (2.1)

Let us denote by (ϕ̄1, ..., ϕ̄m) solution of system (1.1). Then it is clear that
(u1(t, x), ..., um(t, x)) = (ϕ̄1, ..., ϕ̄m) the solution to system (1.3) satisfying the initial
conditions u1(0, x) = ϕ̄1(x), ..., um(0, x) = ϕ̄m(x), x ∈ Rn. In this case (ϕ̄1, ..., ϕ̄m)
called standing solution of problem (1.3), (1.4).

We define the following functionals:

J(ϕ1, ..., ϕm) =

m∑
j=1

pj + 1

2
‖ϕj‖2 −G,

I(ϕ1, ..., ϕm) =

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖ϕj‖2 −G.

Here G = G(ϕ1, ..., ϕm) =
∫
Rn
∏m
j=1 |ϕj(x)|pj+1 dx.

Lemma 2.1 Let’s (ϕ1, ..., ϕm) ∈ H1 × ...×H1\ {(0, ..., 0)} , then

(i) lim
λ→0

J(λϕ1, ..., λϕm) = 0, lim
λ→+∞

J(λϕ1, ..., λϕm) = −∞;

(ii) There is a point λ∗ = λ∗(ϕ1, ..., ϕm) in the interval such 0 < λ < +∞ that

d

dλ
J(λϕ1, ..., λϕm)|λ=λ∗ = 0;

(iii) J(λϕ1, ..., λϕm) in the interval 0 ≤ λ ≤ λ∗ it does not decrease, in the interval λ∗ ≤

λ < +∞ it does not increase, and at the point λ = λ∗ =

[ ∑m
µ=1 pµ+m∑m

j=1(pj+1)‖ϕj‖2

] 1∑m
µ=1 pµ+m−2

it takes on the maximum value;
(iv) I(λϕ1, ..., λϕm) > 0 in the interval 0 < λ < λ∗, but I(λϕ1, ..., λϕm) < 0 and

I(λ∗ϕ1, ..., λ
∗ϕm) = 0 in the interval λ∗ < λ < +∞, and

I(λ∗ϕ1, ..., λ
∗ϕm) =

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖λ∗ϕj‖2 −
∫
Rn

m∏
j=1

|λ∗ϕj(x)|pj+1 dx.

Allow us denote by N the following set

N =
{

(ϕ1, ..., ϕm) : (ϕ1, ..., ϕm) ∈ H1 × ...×H1\ {(0, ..., 0)} , I(ϕ1, ..., ϕm) = 0
}
.

Let’s (ϕ1, ..., ϕm) ∈ N then

J(ϕ1, ..., ϕm) =

(
1− 2∑m

µ=1 pµ +m

)
m∑
j=1

pj + 1

2
‖ϕj‖2 > 0

a J function bounded below.
Consider the following variation problem

d = inf
(ϕ1,...,ϕm)∈N

J(ϕ1, ..., ϕm).
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Lemma 2.2 There is (ϕ̄1, ..., ϕ̄m) ∈ N such a thing that

1 J(ϕ̄1, ..., ϕ̄m) = inf
(ϕ1,...,ϕm)∈N

J(ϕ1, ..., ϕm) = d > 0;

2 (ϕ̄1, ..., ϕ̄m) there is a standing solution to problem (1.3), (1.4).

For δ > 0 let’s define the following functionality:

Iδ(ϕ1, ..., ϕm) = δ
m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖ϕj‖2 −
∫
Rn

m∏
j=1

|ϕj(x)|pj+1 dx. (2.2)

Through r(δ) let’s denote the following

r(δ) = r(δ, p1, ..., pm) =

(
δ

C
∑m
µ=1 pµ+m

) 2∑m
µ=1 pµ+m−2

. (2.3)

Here C = sup
‖u‖6=0

|u|L∑m
µ=1 pµ+m(Rn)

‖u‖ .

Lemma 2.3 Let (u1, ..., um) ∈ H1 × ...×H1\ {(0, ..., 0)} it be Iδ(u1, ..., um) > 0, then

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2 < r(δ).

Lemma 2.4 Let (u1, ..., um) ∈ H1 × ...×H1 then Iδ(u1, ..., um) < 0,

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2 > r(δ).

Lemma 2.5 Let (u1, ..., um) ∈ H1 × ...×H1\ {(0, ..., 0)} then Iδ(u1, ..., um) = 0,

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2 ≥ r(δ). (2.4)

Lemma 2.6 Let conditions (1.5), (1.6) be satisfied. Then

d (δ) ≥ a (δ) r (δ) .

Here

d(δ) = δ
2∑m

µ=1 pµ+m−2

∑m
µ=1 pµ +m− 2δ∑m
µ=1 pµ +m− 2

d, (2.5)

a(δ) =

∑m
µ=1 pµ +m

2
δ. (2.6)

It’s clear that
lim
δ→+0

d (δ) = 0, (2.7)

d

(∑m
µ=1 pµ +m

2

)
= 0, (2.8)

d (1) = d, (2.9)
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d′ (δ) > 0, δ ∈ (0, 1) , (2.10)

d′ (δ) < 0, δ ∈

(
1,

∑m
µ=1 pµ +m

2

)
. (2.11)

Let us denote by E (t) the following energy functional:

E(t) =
m∑
j=1

pj + 1

2

[∣∣u′jt(t, ·)∣∣2 + ‖uj(t, ·)‖2
]
−
∫
Rn

m∏
j=1

|uj(t, x)|pj+1 dx.

We should introduce the following sets:

Wδ =
{

(u1, ..., um) ∈ H1 × ...×H1 : Iδ(u1, ..., um) > 0, J(u1, ..., um) <

< d(δ)}
⋃
{(0, ..., 0)} , 0 < δ < r0;

Vδ =
{

(u1, ..., um) ∈ H1 × ...×H1 : Iδ(u1, ..., um) < 0, J(u1, ..., um) < d(δ)
}
, 0 < δ < r0.

From (2.9) and (2.10) we have that for anyone e ∈ (0, d) equation d (δ) = e has two
different δ1, δ2 roots such that δ1 < 1 < δ2.

Theorem 2.1 Let (u10, ..., um0) ∈ H1× ...×H1,(u11, ..., um1) ∈ L2(Rn)× ...×L2(Rn),
conditions (1.5), (1.6) be satisfied, and for 0 < e < d, δ1 < δ2 are the roots of the equation
d(δ) = e, then the following statements are true:

a) If I(u10, ..., um0) > 0 or ‖ui0‖ 6= 0, i = 1, ...,m, then the solution to problem (1.3),
(1.4) with the initial energy 0 < E (0) ≤ e included in the setWδ, those (u1(t, ·), ..., um(t, ·)) ∈
Wδ.

b) If I(u10, ..., um0) < 0, then the solution to problem (1.3), (1.4) with the initial energy
0 < E (0) ≤ e for any δ1 < δ < δ2 included in the set Vδ, i.e. (u1(t, ·), ..., um(t, ·)) ∈
Vδ.

Proof. a) Let (u10, ..., um0) ∈ H1× ...×H1, (u11, ..., um1) ∈ L2(Rn)× ...×L2(Rn) and

0 < E (0) ≤ e. (2.12)

Assume that

I(u10, ..., um0) > 0 or ‖ui0‖ 6= 0, i = 1, ...,m. (2.13)

From (1.3), (1.4) we have

E(t) +
m∑
j=1

pj + 1

2

∫ t

0
|uj(s, ·)|2 ds = E(0). (2.14)

Taking into account (2.13) and (2.14) we have J(u1(t, ·), ..., um(t, ·)) < e. On the other
hand for δ1 < δ < δ2 we have e < d(δ). That’s why

J(u1(t, ·), ..., um(t, ·)) < d(δ). (2.15)

Let’s a) is not fulfilled. Then taking into account (2.13) and (2.14) there is such t̄ ∈
(0,∞), what

Iδ(u1(t, ·), ..., um(t, ·)) > 0, t ∈ (0, t̄) , (2.16)

Iδ(u1(t̄, ·), ..., um(t̄, ·)) = 0. (2.17)



128 Existence and nonexistence of global solutions ...

Thus, (u1(t̄, ·), ..., um(t̄, ·)) ∈ Nδ, therefore, based on the definition d(δ) we have

d(δ) ≤ J(u1(t̄, ·), ..., um(t̄, ·))

and this contradicts (2.4).
Now prove the statement b).
Let (u10, ..., um0) ∈ H1 × ... × H1, (u11, ..., um1) ∈ L2(Rn) × ... × L2(Rn), 0 <

E (0) ≤ e and I(u10, ..., um0) < 0. Similar to the proof of statement a) there is such
t̄ ∈ [0, T ] that for anyone t ∈

[
0, t
)

the inequalities are satisfied I(u1(t, ·), ..., um(t, ·)) < 0
and I(u1(t̄, ·), ..., um(t̄, ·)) = 0.

We again have the following contradiction

d(δ) ≤ J(u1(t̄, ·), ..., um(t̄, ·)) ≤ e < d(δ).

From Theorem 2.1 we have the following statement.

Theorem 2.2 Let (u10, ..., um0) ∈ H1× ...×H1, (u11, ..., um1) ∈ L2(Rn)× ...×L2(Rn)
and conditions (1.5), (1.6) are satisfied. If 0 < E (0) ≤ e, a each δ1, δ2 there are solutions
to the equation d(δ) = e, then Wδ1δ2 =

⋃
δ1<δ<δ2

Wδ and Vδ1δ2 =
⋃

δ1<δ<δ2

Vδ are invariant

along the entire trajectory with respect to the solution of problem (1.3), (1.4).

From Theorem 2.2 we have the following result showing that between two invariant sets
there is a vacuum zone (empty area).

Theorem 2.3 Let the conditions of Theorem 2.2 be satisfied, then each solution to problem
(1.3), (1.4) satisfies the condition (u1(t, ·), ..., um(t, ·)) /∈ Nδ1,δ2 =

⋃
δ1<δ<δ2

Nδ.

Now consider the cases E(0) ≤ 0.

Theorem 2.4 Let (u10, ..., um0) ∈ H1× ...×H1, (u11, ..., um1) ∈ L2(Rn)× ...×L2(Rn)
and conditions (1.5), (1.6) are satisfied.

If E (0) = 0, ‖ui0‖ 6= 0, i = 1, ...,m, then the solution to problem (1.3), (1.4) satisfies
the inequality

m∑
j=1

pj + 1

2
‖uj(t, ·)‖2 ≥ r0. (2.18)

Here

r0 =


m∑
µ=1

pµ +m

2C2



m∑
µ=1

pµ+m

m∑
µ=1

pµ+m−2

.

Proof. Let (u1(t, ·), ..., um(t, ·)) solution to problem (1.3), (1.4) satisfying E (0) = 0 the
condition so that ‖ui0‖ 6= 0, i = 1, ...,m.

Let’s assume that Tmax is the length of the solution existence
interval (u1(t, ·), ..., um(t, ·)). Using purpose E (t) we have

E(t) =

m∑
j=1

pj + 1

2

∣∣u′jt(t, ·)∣∣2 + J(u1(t, ·), ..., um(t, ·)) = 0. (2.19)
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From here we get

J(u1(t, ·), ..., um(t, ·)) ≤ 0 < d(δ), t ∈ [0, Tmax) (2.20)

and
m∑
j=1

pj + 1

2

∣∣u′jt(t, ·)∣∣2 ≤ ∫
Rn

m∏
j=1

|uj(t, x)|pj+1 dx.

On the other hand, taking into account Hölder’s inequality we have

G =

∫
Rn

m∏
j=1

|uj(t, x)|pj+1 dx ≤

≤ (

∫
RN

|u1(t, x)|
m∑
µ=1

pµ+m

dx)

p1+1
m∑
µ=1

pµ+m

× ...×(

∫
RN

|um(t, x)|
m∑
µ=1

pµ+m

dx)

pm+1
m∑
µ=1

pµ+m

. (2.21)

Using the embedding theorem we obtain

m∑
j=1

pj + 1

2

∣∣u′jt(t, ·)∣∣2

≤ C
∑m
µ=1 pµ+m

(
2∑m

µ=1 pµ +m

)∑m
µ=1 pµ+m

2

×

 m∑
j=1

pj + 1

2

∣∣u′jt(t, ·)∣∣2


∑m
µ=1 pµ+m

2

. (2.22)

If (u10, ..., um0) ∈ H1 × ... × H1, (u11, ..., um1) ∈ L2(Rn) × ... × L2(Rn) and
‖ui0‖ 6= 0, i = 1, ...,m, then there is such a half-interval [0, t1), what is in this half-
interval ‖ui(t, ·)‖ 6= 0, i = 1, ...,m. Taking this fact into account, from (2.9) we obtain the
following inequality

m∑
j=1

pj + 1

2
‖uj(t, ·)‖2 ≥

(∑m
µ=1 pµ +m

2C2

) ∑m
µ=1 pµ+m∑m
µ=1 pµ+m−2

= r0, t ∈ [0, t1) . (2.23)

From here we have ‖ui(t, ·)‖ 6= 0, i = 1, ...,m, therefore (2.21) is true in the half-
interval [t1, 2t1) etc.

Thus, (2.17) is satisfied for half - interval [0, Tmax).

Theorem 2.5 Let (u10, ..., um0) ∈ H1 × ...×H1\ {0, ..., 0} , (u11, ..., um1) ∈ L2(Rn)×
... × L2(Rn) and conditions (1.5), (1.6) are satisfied. If E(0) < 0 or E(0) = 0 and

(u10, ..., um0) 6= (0, ..., 0), then for anyone t ∈ [0, Tmax) and 0 < δ <
∑m
µ=1 pµ+m

2 we have
(u1(t, ·), ..., um(t, ·)) ∈ Vδ.
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Proof. If E(0) < 0 from (2.9) we have

J(u1(t, ·), ..., um(t, ·)) ≤ E(0) < 0 < d(δ). (2.24)

On the other side

J(u1(t, ·), ..., um(t, ·)) =

∑m
µ=1 pµ +m− 2δ∑m

µ=1 pµ +m

m∑
j=1

pj + 1

2
‖uj(t, ·)‖2+Iδ(u1(t, ·), ..., um(t, ·)).

Therefore, if 0 < δ <
∑m
µ=1 pµ+m

2 , then

Iδ(u1(t, ·), ..., um(t, ·)) < 0, t ∈ [0, Tmax) . (2.25)

If E(0) = 0, then taking into account Theorem 2.4 from (2.22), (2.23) we have that

(2.24) is also true for the values δ such that 0 < δ <
∑m
µ=1 pµ+m

2 .

Thus, if 0 < δ <
∑m
µ=1 pµ+m

2 , then Iδ(u1(t, ·), ..., um(t, ·)) ∈ Vδ.
From Theorems 2.3-2.5 we obtain the following result.

Theorem 2.6 Let E(0) < d then and W1 and V1 invariant with respect to the dynamic
system generated by the problem (1.3), (1.4).

3 Existence and asymptotic behavior of the global solution

From Theorem 2.6 we obtain the following theorem on the global solvability of solutions.

Theorem 3.1 Let (u10, ..., um0) ∈ H1× ...×H1, (u11, ..., um1) ∈ L2(Rn)× ...×L2(Rn),
E(0) < d conditions (1.5) and (1.6) be satisfied.

If at any time t0 ∈ [0, Tmax) (u1(t0, ·), ..., um(t0, ·)) ∈ W1, then Tmax = +∞ and
(u1(t, ·), ..., um(t, ·)) the following a priori estimate is true:

m∑
j=1

(pj + 1)
[∣∣u′jt(t, ·)∣∣2 + ‖uj(t, ·)‖2

]
≤

2d(
∑m

µ=1 pµ +m)∑m
µ=1 pµ +m− 2

, t ∈ [0, Tmax) . (3.1)

Proof. From Theorem 2.6 we have (u1(t, ·), ..., um(t, ·)) ∈ W1,t ∈ [0, Tmax) . Therefore,
I(u1(t, ·), ..., um(t, ·)) > 0, 0 < t < Tmax.

Thus, from (2.18) we obtain that 0 ≤ t < Tmax the a priori estimate (3.1) is correct in
the domain. Therefore Tmax = +∞, i.e. problem (1.3), (1.4) has a global solution.

From Theorem 3.1 we obtain the following statement.

Theorem 3.2 Let

a) (u10, ..., um0) ∈ H1 × ...×H1, (u11, ..., um1) ∈ L2(Rn)× ...× L2(Rn);
b) conditions (1.5), (1.6) are satisfied;
c) 0 < E (0) < d;
d) Iδ2(u10, ..., um0) > 0 or ‖ui0‖ = 0, i = 1, ...,m.

Then problem (1.3), (1.4) has a unique solution

(u1(·), ..., um(·)) ∈ C
(
[0,∞) ;H1 × ...×H1

)⋂
C1 ([0,∞) ;L2(Rn)× ...× L2(Rn)) ,

such that (u1(t, ·), ..., um(t, ·)) ∈Wδ, δ1 < δ < δ2, 0 ≤ t < +∞. Here δ1 < δ2 roots of
the equation d (δ) = E (0).
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Proof. From the conditions of the theorem it is clear I(u10, ..., um0) > 0. That indeed, in
otherwise there is Iδ̄(u10, ..., um0) = 0, such as δ̄ ∈ [1, δ2). In that case J(u10, ..., um0) ≤
d(δ). This is for δ1 < δ < δ2 contradicts the condition J(u10, ..., um0) ≤ E(0) < d(δ).

If (u10, ..., um0) ∈ H2 × ... ×H2, (u11, ..., um1) ∈ H1 × ... ×H1, then for solutions
(u1(t, x), ..., um(t, x)) of problem (1.3), (1.4) we have

I(u1, ..., um) = (
∑m

µ=1 pµ +m)−1

{∑m
j=1 (pj + 1)

∣∣∣u′jt(t, ·)∣∣∣2−
− d

dt

∑m
j=1 (pj + 1)

[〈
uj(t, ·), u′jt(t, ·)

〉
+ 1

2 |uj(t, ·)|
2
]} (3.2)

and the following inequality is true

I(u1, ..., um) > (1− δ1)
m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj(t, ·)‖2 . (3.3)

Here δ1 smallest root of equation d (δ) = E (0).

From Theorem 3.2 it follows

Theorem 3.3 Let

a) (u10, ..., um0) ∈ H1 × ...×H1, (u11, ..., um1) ∈ L2(Rn)× ...× L2(Rn);
b) 0 < E (0) < d;
c) I(u10, ..., um0) > 0 or ‖ui0‖ = 0, i = 1, ...,m;
d) conditions (1.5), (1.6) are satisfied.

Then there are such K > 0 and k > 0 that

E (t) ≤ Ke−kt, t ≥ 0.

4 Existence of a global solution and instability of stagnant waves

Let us prove the following theorems on the absence of global solutions.

Theorem 4.1 Let s > n
2 , (u10, ..., um0) ∈ Hs×...×Hs, conditions (1.5), (1.6) are satisfied

and one of the following conditions is satisfied:

a) E(0) < 0;
b) 0 ≤ E(0) < d, I(u10, ..., um0) < 0 and 0 ≤ γ < λ1

∑m
µ=1 pµ.

Here λ1 = 1
c0
, a c0 is the norm of the embedding operator W1

2(Rn) ⊂ L2(Rn).
Then

Tmax < +∞ and lim
t→Tmax

m∑
j=1

‖uj(t, ·)‖2 = +∞.

Proof.

a) If E(0) < 0, then, similar to the proof from [22], we can obtain the required result.
b) Let 0 ≤ E(0) < d, I(u10, ..., um0) < 0 and 0 ≤ γ2 < λ1(

∑m
µ=1 pµ +m− 2), λ1 = 1

c0
.
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Let’s denote

F (t) =
m∑
j=1

(pj + 1) |uj(t, ·)|2 , t ∈ [0, Tmax) ,

we get

F ′(t) = 2

m∑
j=1

(pj + 1)
〈
uj(t, ·), u′jt(t, ·)

〉
, t ∈ [0, Tmax) . (4.1)

Let us assume that the statement of Theorem 4.1 is false, i.e. Tmax = +∞.
If (u10, ..., um0) ∈ Hs× ...×Hs and (u11, ..., um1) ∈ Hs−1× ...×Hs−1, s > N

2 , that
(u1(t, x), ..., um(t, x)) ∈ C ([0,∞) ;Hs × ...×Hs)

⋂
C1
(
[0,∞) ;Hs−1 × ...×Hs−1

)
,

and it’s clear that F ′′(t) ∈ C [0,∞) .
Using simple operations, taking into account (1.3), we obtain

d

dt

[
eγtF ′(t)

]
= 2γeγt

m∑
j=1

(pj + 1)
〈
uj(t, ·), u′jt(t, ·)

〉
+ 2eγt

m∑
j=1

(pj + 1) [
∣∣u′jt(t, ·)∣∣2 − ‖uj(t, ·)‖2

−γ
〈
uj(t, ·), u′jt(t, ·)

〉
] + 2(

m∑
µ=1

pµ +m)eγt
∫
Rn

m∏
j=1

|uj(t, x)|pj+1 dx

= 2eγt
m∑
j=1

(pj + 1)
∣∣u′jt(t, ·)∣∣2 + 2(δ − 1)eγt

m∑
j=1

(pj + 1) ‖uj(t, ·)‖2

−2eγtIδ(u1(t, ·), ..., um(t, ·)). (4.2)

From E(0) < d we have these δ1, δ2, δ1 < 1 < δ2 as

d(δi) = E(0) , i = 1, 2.

In (3.2) we take δ = δ2. Based on Theorem 2.5

Iδ2(u1(t, ·), ..., um(t, ·)) ≤ 0. (4.3)

Therefore, from (4.1), (4.2) we have

d

dt

[
eγtF ′(t)

]
≥ 2(δ2 − 1)eγt

m∑
j=1

(pj + 1) ‖uj(t, ·)‖2 . (4.4)

On the other hand, applying Lemma 2.4 we get

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj(t, ·)‖2 > r(δ2). (4.5)

From (4.4) and (4.5) it follows

d

dt

[
eγtF ′(t)

]
≥ eγtc(δ2). (4.6)



Shafiyeva G.Kh. 133

Here

c(δ2) = 2(δ2 − 1)r(δ2)(

m∑
µ=1

pµ +m).

From (4.6) for sufficiently large t0 we have

F ′(t) ≥ C(δ2)

2λ
, t ≥ t0. (4.7)

Thus lim
t→+∞

F (t) = +∞.

On the other side

F ′′(t) = 2

m∑
j=1

(pj + 1)
[∣∣u′jt(t, ·)∣∣2 − ‖uj(t, ·)‖2]

−2γ

m∑
j=1

(pj + 1)
〈
uj(t, ·), u′jt(t, ·)

〉
+2(

m∑
µ=1

pµ +m)

∫
Rn

m∏
j=1

|uj(t, x)|pj+1 dx

= (

m∑
µ=1

pµ +m+ 2)

m∑
j=1

(pj + 1)
∣∣u′jt(t, x)

∣∣2
+(

m∑
µ=1

pµ +m− 2)
m∑
j=1

(pj + 1) ‖uj(t, ·)‖2

−2γ

m∑
j=1

(pj + 1)
〈
uj(t, ·), u′jt(t, ·)

〉
+ (

m∑
µ=1

pµ +m)

m∑
j=1

∫ t

0

∣∣u′jt(s, ·)∣∣2 ds
−2(

m∑
µ=1

pµ +m)E(0) ≥ (4 + ε)
m∑
j=1

(pj + 1)
[∣∣u′jt(t, ·)∣∣2 + ψ(t)

]
, (4.8)

where

ψ(t) = (
m∑
µ=1

pµ +m− 2− ε)
m∑
j=1

(pj + 1)
∣∣u′jt(t, x)

∣∣2
+λ1(

m∑
µ=1

pµ +m− 2)

m∑
j=1

(pj + 1)
∣∣u′jt(t, x)

∣∣2
−2γ

m∑
j=1

(pj + 1)
〈
uj(t, ·), u′jt(t, ·)

〉
− 2

m∑
µ=1

(pµ +m)E(0). (4.9)

Using the Hölder and Young inequality we have∣∣∣∣∣∣2γ
m∑
j=1

(pj + 1)
〈
uj(t, ·), u′jt(t, ·)

〉∣∣∣∣∣∣ ≤ (
m∑
µ=1

pµ +m− 2− ε)
m∑
j=1

(pj + 1)
∣∣u′jt(t, x)

∣∣2
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+
γ2∑m

µ=1 pµ +m− 2− ε

m∑
j=1

(pj + 1)
∣∣u′jt(t, x)

∣∣2 . (4.10)

From (4.8) - (4.10) for a sufficiently large t0 should

F ′′(t) ≥ (4 + ε)
m∑

j=1

(pj + 1)
∣∣u′jt(t, ·)∣∣2 , t ≥ t0. (4.11)

Hence from (4.1) and (4.9) we obtain

F ′′(t)F (t)− (1 +
ε

4
)F ′2 ≥ (4 + ε)

m∑
j=1

(pj + 1)
∣∣u′jt(t, ·)∣∣2 m∑

j=1

(pj + 1)
∣∣u′jt(t, ·)∣∣2

−(1 +
ε

4
)

 m∑
j=1

(pj + 1)
〈
uj(t, ·), u′jt(t, ·)

〉2

, t ≥ t1.

Using Hölder’s inequality we have the following inequality

F ′′(t)F (t)− (1 +
ε

4
)F ′2(t) ≥ 0, t ≥ t1. (4.12)

From inequalities (4.11) and (4.12) we obtain the following inequality:(
F−(1+ ε

4)(t)
)′′
≤ 0, t ≥ t1.

It follows (
F−(1+ ε

4
)(t)
)′′

=
−(1 + ε

4)F ′(t)

F 2+ ε
2 (t)

< 0, t ≥ t1. (4.13)

Taking (4.7) and (4.13) into account, there exists such t∗ ∈ (0, t1) that lim
t→t∗

F−1(t) = 0,

i.e. lim
t→t∗

F (t) = +∞.

From the resulting contradiction we have Tmax < +∞.

Remark 4.1 From Theorem 4.1 it follows

lim
t→Tmax

m∑
j=1

[
|u′jt(t, x)|2 + ‖uj(t, ·)‖2

]
= +∞.

Theorem 4.2 Let the conditions (1.5), (1.6) be satisfied and

E (0) > 0, I(u10, ..., um0) < 0,

m∑
j=1

pj + 1

2
‖uj0‖2 >

∑m
µ=1 pµ +m− 2∑m
µ=1 pµ +m

E(0).

Then the solution to the Cauchy problem (1.3), (1.4) collapses in a finite period of time.

Remark 4.2 From theorems 4.1 and 4.2, taking into account conditions (1.5), (1.6), it fol-
lows that the stagnant waves corresponding to problem (1.3), (1.4) are not stable.
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5 Proof of auxiliary lemmas

Proof of Lemma 2.1. The proof of property (i) follows directly from the following equality:

J(λΦ1, ..., λΦm) = λ2
m∑
j=1

pj + 1

2

(
|∇Φj |2 + |Φj |2

)

−λ
∑m
µ=1 pµ+m

∫
Rn

m∏
j=1

|Φj(x)|pj+1 dx.

(ii) By elementary transformations it can be proven that

d

dλ
J(λΦ1, ..., λΦm) = λ

m∑
j=1

(pj + 1)
(
|∇Φj |2 + |Φj |2

)

−

 m∑
µ=1

pµ +m

λ∑m
µ=1 pµ+m−1

∫
Rn

m∏
j=1

|Φj(x)|pj+1 dx. (5.1)

It follows

λ∗ =

 ∑m
j=1(pj + 1) ‖Φj‖2[∑m

µ=1 pµ +m
] ∫

Rn
∏m
j=1 |Φj(x)|pj+1 dx

 1∑m
µ=1 pµ+m−2

.

At the point λ = λ∗ the following equality holds:

d

dλ
J(λΦ1, ..., λΦm)

∣∣∣∣
λ=λ∗

= 0.

(iii) From (5.1) it is clear that when 0 < λ < λ∗

d

dλ
J(λΦ1, ..., λΦm) > 0,

and when λ∗ < λ < +∞
d

dλ
J(λΦ1, ..., λΦm) < 0,

those statement (iii) is true.
(iv) From the purposes of the functionals Jand Iand (5.1) we have

I(λΦ1, ..., λΦm) =
λ∑m

µ=1 pµ +m

d

dλ
J(λΦ1, ..., λΦm).

Let us define the following set

N =
{

(ϕ1, ..., ϕm) : (ϕ1, ..., ϕm) ∈ H1 × ...×H1\ {(0, ..., 0)} , I(ϕ1, ..., ϕm) = 0
}
.

We should (ϕ1, ..., ϕm) ∈ N, then

J(ϕ1, ..., ϕm) =

(
1− 2∑m

µ=1 pµ +m

)
m∑
j=1

pj + 1

2
‖ϕj‖2 > 0, (5.2)
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those J bounded below in N . Consider the following variation problem

d = inf
(ϕ1,...,ϕm)∈N

J(ϕ1, ..., ϕm).

Proof of Lemma 2.2. If (u1, ..., um) ∈ N, then from (5.2) we have

J(u1, ..., um) =

∑m
µ=1 pµ +m− 2∑m
µ=1 pµ +m

m∑
j=1

pj + 1

2
‖uj‖2 > 0.

Let (u1r, ..., umr) the sequence ensuring minimization, i.e.

lim
r→∞

J(u1r, ..., umr) = inf
(u1,...,um)∈N

J(u1, ..., um) = d.

Allow us denote ujλ = ruj , j = 1, ...,m and Schwartz symmetrization with respect to
the variable x, yjr = µrujr through vjr = (u∗jr)µr [17–19]. Here µr it is chosen so that
(v1r, ..., vmr) ∈ N.

Taking into account (5.2), we have

J(v1r, ..., vmr) =

(
1− 2δ∑m

µ=1 pµ +m

)
m∑
j=1

pj + 1

2
‖vjr‖2 . (5.3)

On the other side ([17,18])∫
Rn

|∇vjr|2 dx =

∫
Rn

∣∣∇(u∗jr)µr
∣∣2 dx

=

∫
Rn

|(∇(ujr)µr)
∗|2dx ≤

∫
Rn

|∇(ujr)µr |2dx. (5.4)

From (5.3), (5.4) follows

J(v1r, ..., vmr) ≤ J((u1r)µr , ..., (umr)µr). (5.5)

On the other hand, based on the choice µr we get

J((u1r)µr , ..., (umr)µr) ≤ J(u1r, ..., umr). (5.6)

Thus,
lim
r→∞

J(v1r, ..., vmr) = d.

From here
‖∇vjr‖ ≤ c. (5.7)

Therefore, there is such an element (v1∞, ..., vm∞) ∈ H1 × ... × H1, what for its
subsequence at r → +∞

vjr → vj∞ in H1 weakly, j = 1, ...,m. (5.8)

Then for p ≤ 2
n−2 from the compactness of the embedding H1 ⊂ Lp(Rn)([20]) at r → +∞

vjr → vj∞ in Lp(R
n), j = 1, ...,m. (5.9)

Let’s prove that (v1∞, ..., vm∞) 6= (0, ..., 0). Let’s assume the opposite, i.e.

(v1∞, ..., vm∞) = (0, ..., 0). (5.10)



Shafiyeva G.Kh. 137

Then from (2.20), (5.9) and (5.10) at r → +∞ we have

G(v1r, ..., vmr)→ 0.

On the other hand, since I(v1r, ..., vmr) = 0, from (5.9) at r → +∞ we have

vjr → 0 in H1 strong, j = 1, ...,m. (5.11)

Because (v1r, ..., vmr) ∈ N, from Hölder’s inequality and embedding H1 ⊂ Lp(Rn) ([21])
we get

m∑
µ=1

pj + 1
m∑
µ=1

pµ +m

‖vjr‖2 =

=

∫
Rn

m∏
j=1

|vj(x)|pj+1 dx ≤ ‖v1r‖p1+1
L m∑
µ=1

pµ+m
(Rn) × ...× ‖vmr‖

pm+1
L m∑
µ=1

pµ+m
(Rn) .

Begining at multiplicative inequalities of the Gagliardo - Nirenberg type it follows

‖vjr‖
pj+1

L∑m
µ=1 pµ+m(Rn) ≤ ‖∇vjr‖

(pj+1)θ ‖vjr‖(pj+1)(1−θ) ([21]), (5.12)

where

θ = n

(
1

2
− 1∑m

µ=1 pµ +m

)
, j = 1, ...,m.

From (5.7) and (5.12) we have

‖vjr‖
pj+1

L∑m
µ=1 pµ+m(Rn) ≤ c ‖∇vjr‖

(pj+1)θ , j = 1, ...,m.

As a result we get

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖vjr‖2 ≤ c
∑m
µ=1 pµ+m

 m∑
j=1

‖vjr‖2
 3n

2
(
∑m
µ=1 pµ+m−2)

.

Here
m∑
j=1

‖vjr‖2 ≥ c1 > 0.

And this contradicts our assumption. Thus, d > 0.
Proof of Lemma 2.3. From inequality (2.20), H1 ⊂ L∑m

µ=1 pµ+m(Rn) and Young’s
inequalities we have

G ≤ C
∑m
µ=1 pµ+m |u1|p1+1

L∑m
µ=1 pµ+m(Rn) × ...× |um|

pm+1
L∑m

µ=1 pµ+m(Rn) ≤

≤ C
∑m
µ=1 pµ+m

[∑m
j=1

pj+1∑m
µ=1 pµ+m

‖uj‖2
]∑m

µ=1 pµ+m−2

2
+1
.

If
m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2 < r(δ)
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we get

G ≤ δ
m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2 .

From the definition Iδ(u1, ..., um) it follows Iδ(u1, ..., um) > 0.
Proof of Lemma 2.4. If (u1, ..., um) ∈ H1 × ... ×H1, ‖uj‖ 6= 0, j = 1, ...,m and

Iδ(u1, ..., um) < 0, then the following inequality is true:

δ

m∑
µ=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2 <

<

∫
Rn

m∏
j=1

|uj(x)|pj+1 dx ≤ C
∑m
µ=1 pµ+m

 m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2


∑m
µ=1 pµ+m−2

2
+1

.

This implies the required inequality.
Proof of Lemma 2.5. If ‖uj‖ 6= 0, j = 1, ...,m, then from Iδ(u1, ..., um) = 0 we get

δ

m∑
j=1

pj + 1∑m
µ=1 pµ +m− 1

‖uj‖2 =

=

∫
Rn

m∏
j=1

|uj(x)|pj+1 dx ≤ C
∑m
µ=1 pµ+m

 m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2


∑m
µ=1 pµ+m−2

2
+1

.

Thus,

m∑
j=1

pj + 1∑m
µ=1 pµ +m− 1

‖uj‖2 ≥ r(δ) =

(
δ

C
∑m
µ=1 pµ+m

) 2∑m
µ=1 pµ+m−2

.

Proof of Lemma 2.6. From Lemma 2.5 for each (u1, ..., um) ∈ N we have

m∑
j=1

pj + 1∑m
µ=1 pµ +m− 1

‖uj‖2 ≥ r(δ).

Therefore

J(u1, ..., um) =

(∑m
µ=1 pµ +m

2
− δ

)
m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖uj‖2 ≥ a(δ)r(δ).

Here 0 < δ <
∑m
µ=1 pµ+m

2 , a(δ) =
∑m
µ=1 pµ+m

2 − δ, d(δ) ≥ a(δ)r(δ).
Let’s say (ū1, ..., ūm) ∈ N minimum element, i.e. d = J(ū1, ..., ūm).
For anyone δ > 0 let’s choose something like λ = λ(δ), this

δ
m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖λūj‖2 =

∫
Rn

m∏
j=1

|λūj(x)|pj+1 dx. (5.13)
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Hence,

λ(δ) =

[
δ
∑m

j=1(pj + 1) ‖ūj‖2

(
∑m

µ=1 pµ +m)
∫
Rn
∏m
j=1 |ūj(x)|pj+1 dx

] 1∑m
µ=1 pµ+m−2

= δ
1∑m

µ=1 pµ+m−2 .

(5.14)
Because (λ(δ)ū1, ..., λ(δ)ūm) ∈ Nδ, from the definition d (δ) the following inequality

is true
d(δ) ≤ J(λ(δ)ū1, ..., λ(δ)ūm) =

= δ
2∑m

µ=1 pµ+m−2

m∑
j=1

pj + 1

2
‖ūj‖2 − δ

1+ 2∑m
µ=1 pµ+m−2

∫
Rn

m∏
j=1

|ūj(x)|pj+1 dx. (5.15)

On the other side,
(ū1, ..., ūm) ∈ N. (5.16)

Therefore ∫
Rn

m∏
j=1

|ūj(x)|pj+1 dx =

m∑
j=1

pj + 1∑m
µ=1 pµ +m

‖ūj‖2 . (5.17)

From (5.13) and (5.17) we have

d(δ) ≤ δ
2∑m

µ=1 pµ+m−2

(
1− 2δ∑m

µ=1 pµ +m

)
m∑
j=1

pj + 1

2
‖ūj‖2 . (5.18)

Therefore, if (ū1, ..., ūm) the minimum element, then

d = J(ū1, ..., ūm) =

∑m
µ=1 pµ +m− 2∑m
µ=1 pµ +m

m∑
j=1

pj + 1

2
‖ūj‖2 ,

those
m∑
j=1

pj + 1

2
‖ūj‖2 =

∑m
µ=1 pµ +m∑m

µ=1 pµ +m− 2
d. (5.19)

From (5.17) and (5.19) we obtain

d(δ) ≤
∑m

µ=1 pµ +m− 2δ∑m
µ=1 pµ

δ
2∑m

µ=1 pµ+m−2d. (5.20)

Let’s (v̄1, ..., v̄m) ∈ Nδ an element that provides a minimum of functionality J(u1, ..., um),
i.e.

J(v̄1, ..., v̄m) = min
(v̄1,...,v̄m)∈Nδ

J(v1, ..., vm) = d(δ).

We should choose the parameter µ = µ (δ) so that (µv1, ..., µvm) ∈ N, those

I(µv̄1, ..., µv̄m) = 0. (5.21)

Then

µ = µ(δ) =

[ ∑m
j=1(pj + 1) ‖v̄j‖2

(
∑m

µ=1 pµ +m)
∫
Rn
∏m
j=1 |v̄j(x)|pj+1 dx

] 1∑m
µ=1 pµ+m−2

=

(
1

δ

) 1∑m
µ=1 pµ+m−2

.
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Considering the definition d we have

d ≤ J(µv̄1, ..., µv̄m)

=

(
1

δ

) 1∑m
µ=1 pµ+m−2

m∑
j=1

pj + 1

2
‖v̄j‖2 −

(
1

δ

) ∑m
µ=1 pµ+m∑m
µ=1 pµ+m−2

∫
Rn

m∏
j=1

|v̄j |pj+1 dx

=

(
1

δ

) 1∑m
µ=1 pµ+m−2

∑m
µ=1 pµ +m− 2∑m
µ=1 pµ +m

m∑
j=1

pj + 1

2
‖v̄j‖2 . (5.22)

On the other hand, from (5.21) and (5.22) we obtain

J(v̄1, ..., v̄m) =

(
1− 2δ∑m

µ=1 pµ +m

)
m∑
j=1

pj + 1

2
‖v̄j‖2 .

Therefore
m∑
j=1

pj + 1

2
‖v̄j‖2 =

∑m
µ=1 pµ +m∑m

µ=1 pµ +m− 2δ
J(v̄1, ..., v̄m) =

∑m
µ=1 pµ +m∑m

µ=1 pµ +m− 2δ
d(δ).

(5.23)
From (5.21) and (5.22) it follows

d ≤
(

1

δ

) 1∑m
µ=1 pµ+m−2

∑m
µ=1 pµ +m− 2∑m
µ=1 pµ +m− 2δ

d(δ),

those

d(δ) ≥
∑m

µ=1 pµ +m− 2δ∑m
µ=1 pµ +m− 2

δ
1∑m

µ=1 pµ+m−2d. (5.24)

If we compare (5.20) and (5.23) we get

d(δ) =

∑m
µ=1 pµ +m− 2δ∑m
µ=1 pµ +m− 2

δ
1∑m

µ=1 pµ+m−2d.
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