Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics, **45** (4), 20-29 (2025).

Commutator of Marcinkiewicz integral on total mixed Morrey spaces

Sahib A. Aliyev · Mubariz G. Hajibayov · Fatai A. Isayev* · Ruhiyya O. Jafarova

Received: 12.10.2024 / Revised: 14.07.2025 / Accepted: 11.08.2025

Abstract. In this paper, we study the boundedness of the Marcinkiewicz operator μ_{Ω} and its commutator $\mu_{b,\Omega}$ on total mixed Morrey spaces $L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$.

Keywords. Total mixed Morrey spaces, Marcinkiewicz operator, commutators, BMO.

Mathematics Subject Classification (2010): 42B20, 42B25, 35J10

1 Introduction

In 1961, Benedek and Panzone [7] introduced Lebesgue spaces $L^{\mathbf{p}}$ with mixed norm over Euclidean spaces, which extend Lebesgue spaces and their related properties. In 1975, Bagby [6] investigated the boundedness of the Hardy-Littlewood maximal operator for functions taking values in spaces $l^{\mathbf{p}}(\mathbb{R}^n)$. Since then, many papers focus various mixed norm spaces and the bounded properties of integral operators on spaces with mixed norm. In 2019, Nogayama [22,23] considered a new Morrey space, with the L^p norm replaced by the mixed Lebesgue norm $L^{\mathbf{p}}(\mathbb{R}^n)$, which is call mixed Morrey spaces.

Classical Morrey spaces $L^{p,\lambda}$ were originally introduced by Morrey in [21] to study the local behavior of solutions of second-order elliptic partial differential equations. In 2022, Guliyev [12] introduced a variant of Morrey spaces called total Morrey spaces $L^{p,\lambda,\mu}(\mathbb{R}^n)$, $0 , <math>\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}$. Total Morrey spaces generalize the classical Morrey spaces

Sa.A. Aliyev

Nakhchivan Teacher Institute, Department of Mathematics and Informatics, Nakhchivan, Azerbaijan Nakhchivan State University, Department of General Mathematics, Nakhchivan, Azerbaijan E-mail: sahib1960elm@gmail.com

M.G. Hajibayov

National Aviation Academy, Baku, Azerbaijan Institute of Mathematics and Mechanics, Ministry of Science E-mail: hajibayovm@yahoo.com

F.A. Isayev

Institute of Mathematics and Mechanics, Ministry of Science and Educations of the Republic of Azerbaijan, Baku, Azerbaijan E-mail: isayevfatai@yahoo.com

R.O. Jafarova

Nakhchivan State University, Department of General Mathematics, Nakhchivan, Azerbaijan

E-mail: cebr2012@mail.ru

^{*} Corresponding author

 $L^{p,\lambda}(\mathbb{R}^n)$ so that $L^{p,\lambda,\lambda}(\mathbb{R}^n)\equiv L^{p,\lambda}(\mathbb{R}^n)$ and the modified Morrey spaces $\widetilde{L}^{p,\lambda}(\mathbb{R}^n)$ so that $L^{p,\lambda,0}(\mathbb{R}^n)=\widetilde{L}^{p,\lambda}(\mathbb{R}^n)$. Necessary and sufficient conditions for the boundedness of the maximal commutator operator M_b and the commutator of the maximal operator [b,M] on $L^{p,\lambda,\mu}(\mathbb{R}^n)$ when b belongs to the spaces $BMO(\mathbb{R}^n)$, are given in [12, Theorems 3 and 4], see also [9,14-16,24,25].

In [16], the authors consider the total mixed Morrey spaces $L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$ introduced by Guliyev in [12] in the case $\mathbf{p}=(p,\ldots,p)$. These spaces generalize mixed Morrey spaces so that $L^{\mathbf{p},\lambda,\lambda}(\mathbb{R}^n)\equiv L^{\mathbf{p},\lambda}(\mathbb{R}^n)$ and the modified mixed Morrey spaces so that $L^{\mathbf{p},\lambda,0}(\mathbb{R}^n)=\widetilde{L}_{\mathbf{p},\lambda}(\mathbb{R}^n)$. The main properties of the spaces $L^{\mathbf{p},\lambda,\lambda}(\mathbb{R}^n)$ were presented and some embeddings into the Morrey space $L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$ are studied. Necessary and sufficient conditions for the boundedness of the maximal commutator operator M_b and the commutator of the maximal operator [b,M] on $L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$ are also given. New characteristics for some subclasses of $BMO(\mathbb{R}^n)$ are obtained.

For any r>0 and $x\in\mathbb{R}^n$, let $B(x,r)=\{y:|y-x|< r\}$ be the ball centered at x with radius r. Let $\mathrm{B}=\{B(x,r):x\in\mathbb{R}^n,\ r>0\}$ be the set of all such balls. We also use χ_E and |E| to denote the characteristic function and the Lebesgue measure of a measurable set E. Let $S^{n-1}=\{x\in\mathbb{R}^n:|x|=1\}$ be the unit sphere of \mathbb{R}^n $(n\geq 2)$ equipped with the normalized Lebesgue measure. Suppose that Ω satisfies the following conditions.

(i) Ω is a homogeneous function of degree zero on \mathbb{R}^n . That is,

$$\Omega(tx) = \Omega(x) \tag{1.1}$$

for all t > 0 and $x \in \mathbb{R}^n$.

(ii) Ω has mean zero on S^{n-1} . That is,

$$\int_{S^{n-1}} \Omega(x')dx' = 0, \tag{1.2}$$

where x' = x/|x| for any $x \neq 0$.

The Marcinkiewicz integral operator of higher dimension μ_{Ω} is defined by

$$\mu_{\Omega}(f)(x) = \left(\int_0^\infty |F_{\Omega,t}(f)(x)|^2 \frac{dt}{t^3}\right)^{1/2},$$

where

$$F_{\Omega,t}(f)(x) = \int_{B(x,t)} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) dy.$$

It is well known that the Littlewood-Paley g-function is a very important tool in harmonic analysis and the Marcinkiewicz integral is essentially a Littlewood-Paley g-function. In this paper, we will consider the commutator $\mu_{\Omega,b}$ which is given by the following expression

$$\mu_{\Omega,b}f(x) = \left(\int_0^\infty |F_{\Omega,t}^b(x)|^2 \frac{dt}{t^3}\right)^{1/2},$$

where

$$F_{\Omega,t}^b(x) = \int_{B(x,t)} \frac{\Omega(x-y)}{|x-y|^{n-1}} [b(x) - b(y)] f(y) dy.$$

The study of Schrödinger operator $L=-\Delta+V$ recently attracted much attention. In particular, Shen [26] considered L_p estimates for Schrödinger operators L with certain potentials which include Schrödinger Riesz transforms $R_j^L=\frac{\partial}{\partial x_j}L^{-\frac{1}{2}}, j=1,\ldots,n$. Then, Dziubanński and Zienkiewicz [10] introduced the Hardy type space $H_L^1(\mathbb{R}^n)$ associated

with the Schrödinger operator L, which is larger than the classical Hardy space $H^1(\mathbb{R}^n)$, see also [2-5,8,13,17,18].

Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz functions $\mu_{j,\Omega}$ associated with the Schrödinger operator L by

$$\mu_{j,\Omega}^L f(x) = \left(\int_0^\infty \left| \int_{B(x,t)} |\Omega(x-y)| K_j^L(x,y) f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2},$$

where $K_j^L(x,y)=\widetilde{K_j^L}(x,y)|x-y|$ and $\widetilde{K_j^L}(x,y)$ is the kernel of $R_j=\frac{\partial}{\partial x_j}L^{-\frac{1}{2}},\ j=1,\ldots,n.$ In particular, when $V=0,\ K_j^\Delta(x,y)=\widetilde{K_j^\Delta}(x,y)|x-y|=\frac{(x-y)_j/|x-y|}{|x-y|^{n-1}}$ and $\widetilde{K_j^\Delta}(x,y)$ is the kernel of $R_j=\frac{\partial}{\partial x_j}\Delta^{-\frac{1}{2}},\ j=1,\ldots,n.$ From now on, we will write $K_j(x,y)=K_j^\Delta(x,y)$ and

$$\mu_{j,\Omega}f(x) = \left(\int_0^\infty \left| \int_{B(x,t)} |\Omega(x-y)| K_j(x,y) f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2}.$$

Obviously, $\mu_{j,\Omega}f$ are classical Marcinkiewicz functions with rough kernel. Therefore, it will be an interesting to study the properties of the operator $\mu_{i,\Omega}^L$.

The commutator of the classical Marcinkiewicz function with rough kernel is defined by

$$\mu_{j,\Omega,b}f(x) = \left(\int_0^\infty \left| \int_{B(x,t)} |\Omega(x-y)| K_j(x,y) [b(x)-b(y)] f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2}.$$

The commutator $\mu_{j,\Omega,b}^L$ formed by $b \in BMO(\mathbb{R}^n)$ and the Marcinkiewicz function with rough kernel $\mu_{j,\Omega}^L$ is defined by

$$\mu_{j,\Omega,b}^{L}f(x) = \left(\int_{0}^{\infty} \left| \int_{B(x,t)} |\Omega(x-y)| K_{j}^{L}(x,y) [b(x) - b(y)] f(y) dy \right|^{2} \frac{dt}{t^{3}} \right)^{1/2}.$$

The main goal of this paper is to show that Marcinkiewicz operators with rough kernel associated with the Schrödinger operators $\mu_{j,\Omega}^L$, $j=1,\ldots,n$, are bounded on the total mixed Morrey space $L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$, $1<\mathbf{p}<\infty$, $0\leq\lambda\leq n$, $0\leq\mu\leq n$.

The well-known classical Hardy-Littlewood maximal operator M is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy,$$

where $f \in L^1_{loc}(\mathbb{R}^n)$ and |B(x,r)| is the Lebesgue measure of the ball B(x,r). As we know, the Hardy-Littlewood maximal operator M is bounded on $L^{\mathbf{p}}(\mathbb{R}^n)$, $1 < \mathbf{p} < \infty$ (see [22,23]), but there is no complete boundedness results for some other operators on the mixed Lebesgue spaces.

We find the conditions with $b \in BMO(\mathbb{R}^n)$ which ensures the boundedness of the operators $\mu_{j,\Omega,b}^L$, $j=1,\ldots,n$ on total mixed Morrey space $L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$, $1<\mathbf{p}<\infty$, $0\leq \lambda\leq n, 0\leq \mu\leq n$.

 $0 \le \lambda \le n, 0 \le \mu \le n$. By $A \lesssim B$, we mean that $A \le CB$ for some constant C > 0, and $A \approx B$ means that $A \lesssim B$ and $B \lesssim A$.

2 Definitions and preliminaries

We first recall the definition of mixed Lebesgue space defined in [7].

Let $\mathbf{p}=(p_1,\cdots,p_n)\in(0,\infty]^n$. Then the mixed Lebesgue norm $\|\cdot\|_{L^\mathbf{p}}$ or $\|\cdot\|_{L^{(p_1,\ldots,p_n)}}$ is defined by

$$||f||_{L^{\mathbf{p}}} = ||f||_{L^{(p_1,\dots,p_n)}}$$

$$= \left(\int_{\mathbb{R}} \dots \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x_1, x_2, \dots, x_n)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \dots dx_n\right)^{\frac{1}{p_n}}$$

where $f: \mathbb{R}^n \to \mathbb{C}$ is a measurable function. If $p_j = \infty$ for some j = 1, n, then we have to make appropriate modifications. We define the mixed Lebesgue space $L^{\mathbf{p}}(\mathbb{R}^n) = L^{(p_1, \dots, p_n)}(\mathbb{R}^n)$ to be the set of all locally integrable functions f with $||f||_{L^{\mathbf{p}}} < \infty$.

Definition 2.1 Let $0 < \mathbf{p} < \infty$, $\lambda \in \mathbb{R}$, $\mu \in \mathbb{R}$, $[t]_1 = \min\{1,t\}$, t > 0. We denote by $L^{\mathbf{p},\lambda}(\mathbb{R}^n)$ the mixed Morrey space [23], by $\widetilde{L}_{\mathbf{p},\lambda}(\mathbb{R}^n)$ the modified mixed Morrey space [11], and by $L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$ the total mixed Morrey space the set of all classes of locally integrable functions f with the finite norms

$$||f||_{L^{\mathbf{p},\lambda}} = \sup_{x \in \mathbb{R}^n, t > 0} t^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} ||f||_{L^{\mathbf{p}}(B(x,t))},$$

$$||f||_{\widetilde{L}_{\mathbf{p},\lambda}} = \sup_{x \in \mathbb{R}^n, t > 0} [t]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} ||f||_{L^{\mathbf{p}}(B(x,t))},$$

$$||f||_{L^{\mathbf{p},\lambda,\mu}} = \sup_{x \in \mathbb{R}^n, t > 0} [t]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/t]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} ||f||_{L^{\mathbf{p}}(B(x,t))},$$

respectively.

Definition 2.2 Let $0 < \mathbf{p} < \infty$, $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}$. We define the weak mixed Morrey space $WL^{\mathbf{p},\lambda}(\mathbb{R}^n)$ [23], the weak modified mixed Morrey space $W\widetilde{L}_{\mathbf{p},\lambda}(\mathbb{R}^n)$ [11] and the weak total mixed Morrey space $WL^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)$ as the set of all locally integrable functions f with finite norms

$$\begin{split} \|f\|_{WL^{\mathbf{p},\lambda}} &= \sup_{x \in \mathbb{R}^n, \, t > 0} t^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \|f\|_{WL^{\mathbf{p}}(B(x,t))}, \\ \|f\|_{W\widetilde{L}^{\mathbf{p},\lambda}} &= \sup_{x \in \mathbb{R}^n, \, t > 0} [t]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \|f\|_{WL^{\mathbf{p}}(B(x,t))}, \\ \|f\|_{WL^{\mathbf{p},\lambda,\mu}} &= \sup_{x \in \mathbb{R}^n, \, t > 0} [t]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/t]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \|f\|_{WL^{\mathbf{p}}(B(x,t))}, \end{split}$$

respectively.

Note that

$$\begin{split} L^{\mathbf{p},0,0}(\mathbb{R}^n) &= \widetilde{L}_{\mathbf{p},0}(\mathbb{R}^n) = L^{\mathbf{p},0}(\mathbb{R}^n) = L^{\mathbf{p}}(\mathbb{R}^n), \\ WL^{\mathbf{p},0,0}(\mathbb{R}^n) &= W\widetilde{L}_{\mathbf{p},0}(\mathbb{R}^n) = WL^{\mathbf{p},0}(\mathbb{R}^n) = WL^{\mathbf{p}}(\mathbb{R}^n), \\ L^{\mathbf{p},\lambda,\lambda}(\mathbb{R}^n) &= L^{\mathbf{p},\lambda}(\mathbb{R}^n), \quad L^{\mathbf{p},\lambda,0}(\mathbb{R}^n) = \widetilde{L}_{\mathbf{p},\lambda}(\mathbb{R}^n), \\ \|f\|_{WL^{\mathbf{p},\lambda,\mu}} &\leq \|f\|_{L^{\mathbf{p},\lambda,\mu}} \text{ and therefore } L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) \subset WL^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) \end{split}$$

and

$$L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) \subset_{\succ} L^{\mathbf{p},\lambda}(\mathbb{R}^n), \ \mu \leq \lambda \text{ and } \|f\|_{L^{\mathbf{p},\lambda}} \leq \|f\|_{L^{\mathbf{p},\lambda,\mu}},$$

$$L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) \subset_{\succ} L^{\mathbf{p},\mu}(\mathbb{R}^n), \ \mu \leq \lambda \text{ and } \|f\|_{L^{\mathbf{p},\mu}} \leq \|f\|_{L^{\mathbf{p},\lambda,\mu}}$$

$$\widetilde{L}_{\mathbf{p},\lambda}(\mathbb{R}^n) \subset_{\succ} L^{\mathbf{p}}(\mathbb{R}^n) \text{ and } \|f\|_{L^{\mathbf{p}}} \leq \|f\|_{\widetilde{L}_{\mathbf{p},\lambda}}$$

and if $\lambda < 0$ or $\lambda > n$, then $L^{\mathbf{p},\lambda}(\mathbb{R}^n) = \widetilde{L}_{\mathbf{p},\lambda}(\mathbb{R}^n) = WL^{\mathbf{p},\lambda}(\mathbb{R}^n) = W\widetilde{L}_{\mathbf{p},\lambda}(\mathbb{R}^n) = \Theta$, where $\Theta \equiv \Theta(\mathbb{R}^n)$ is the set of all functions equivalent to 0 on \mathbb{R}^n .

Lemma 2.1 [16] If $0 < \mathbf{p} < \infty$, $0 \le \mu \le \lambda \le n$, then

$$L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) = L^{\mathbf{p},\lambda}(\mathbb{R}^n) \cap L^{\mathbf{p},\mu}(\mathbb{R}^n)$$

and

$$||f||_{L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)} = \max\left\{||f||_{L^{\mathbf{p},\lambda}(\mathbb{R}^n)}, ||f||_{L^{\mathbf{p},\mu}(\mathbb{R}^n)}\right\}.$$

Lemma 2.2 [16] If $0 < \mathbf{p} < \infty$, $0 \le \mu \le \lambda \le n$, then

$$WL^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) = WL^{\mathbf{p},\lambda}(\mathbb{R}^n) \cap WL^{\mathbf{p},\mu}(\mathbb{R}^n)$$

and

$$||f||_{WL^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n)} = \max\{||f||_{WL^{\mathbf{p},\lambda}}, ||f||_{WL^{\mathbf{p},\mu}}\}.$$

Remark 2.1 If $0 < \mathbf{p} < \infty$, and $\mu < 0$ or $\lambda > n$, then

$$L^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) = WL^{\mathbf{p},\lambda,\mu}(\mathbb{R}^n) = \Theta(\mathbb{R}^n).$$

3 Marcinkiewicz operator μ_{Ω} in total mixed Morrey spaces

In this section, we investigate the boundedness of Marcinkiewicz operator μ_{Ω} satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$ on the total mixed Morrey space $L^{\mathbf{p},\lambda,\mu}$.

The following lemma gives us explicit estimates for the $L^{\mathbf{p}}(\mathbb{R}^n)$ norm of μ_{Ω} on a given ball $B(x_0,r)$.

Lemma 3.1 [1, Lemma 3.1] Let Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Then for $1 < \mathbf{p} < \infty$, the inequality

$$\|\mu_{\Omega}f\|_{L^{\mathbf{p}}(B(x_{0},r))} \lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} t^{-1-\sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt$$
(3.1)

holds for any ball $B(x_0, r)$ and all $f \in L^{\mathbf{p}}_{loc}(\mathbb{R}^n)$.

Now we can present the first main result in this section.

Theorem 3.1 Let Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Let also $1 < \mathbf{p} < \infty$, $0 \le \lambda \le n$ and $0 \le \mu \le n$. Then the operator μ_{Ω} is bounded on $L^{\mathbf{p},\lambda,\mu}$ Moreover,

$$\|\mu_{\Omega}f\|_{L^{\mathbf{p},\lambda,\mu}} \leq \|f\|_{L^{\mathbf{p},\lambda,\mu}}.$$

Proof. From the inequality (3.1) we get

$$\begin{split} &\|\mu_{\Omega}f\|_{L^{\mathbf{p},\lambda,\mu}} = \sup_{x \in \mathbb{R}^n, r > 0} [r]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/r]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \|\mu_{\Omega}f\|_{L^{\mathbf{p}}(B(x,r))} \\ &\lesssim \sup_{x \in \mathbb{R}^n, r > 0} [r]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/r]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} r^{\sum_{i=1}^n \frac{1}{p_i}} \int_{2r}^{\infty} t^{-1-\sum_{i=1}^n \frac{1}{p_i}} \|f\|_{L^{\mathbf{p}}(B(x_0,t))} \, dt \\ &\lesssim \|f\|_{L^{\mathbf{p},\lambda,\mu}} \sup_{x \in \mathbb{R}^n, r > 0} [r]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/r]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} r^{\sum_{i=1}^n \frac{1}{p_i}} \\ &\times \int_r^{\infty} t^{-\sum_{i=1}^n \frac{1}{p_i}} [t]_1^{\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/t]_1^{-\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \frac{dt}{t} \\ &\lesssim \|f\|_{L^{\mathbf{p},\lambda,\mu}} \sup_{x \in \mathbb{R}^n, r > 0} [r]_1^{-\frac{n-\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/r]_1^{-\frac{n-\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \\ &\times \int_r^{\infty} [t]_1^{-\frac{n-\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/t]_1^{\frac{n-\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \frac{dt}{t} \\ &= \|f\|_{L^{\mathbf{p},\lambda,\mu}} \sup_{x \in \mathbb{R}^n, r > 0} \int_1^{\infty} [t]_1^{-\frac{n-\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/t]_1^{\frac{n-\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \frac{dt}{t} \\ &\lesssim \|f\|_{L^{\mathbf{p},\lambda,\mu}}. \end{split}$$

Thus the proof of the theorem is completed.

Note that if we take $\mathbf{p}=(p,\ldots,p)$ in Theorem 3.1, we obtain the boundedness of μ_{Ω} on the total Morrey spaces.

4 Commutator of Marcinkiewicz operator $\mu_{\Omega,b}$ in total mixed Morrey spaces

In this section, we investigate the boundedness of commutator of Marcinkiewicz operator $\mu_{\Omega,b}$ satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$ on the total mixed Morrey space $L^{\mathbf{p},\lambda,\mu}$. First, we review the definition of $BMO(\mathbb{R}^n)$, the bounded mean oscillation space. A function $f \in L^1_{loc}(\mathbb{R}^n)$ belongs to the bounded mean oscillation space $BMO(\mathbb{R}^n)$ if

$$||f||_{BMO} = \sup_{x \in \mathbb{R}^n, r > 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} |f(y) - f_{B(x, r)}| dy < \infty.$$
 (4.1)

If one regards two functions whose difference is a constant as one, then the space $BMO(\mathbb{R}^n)$ is a Banach space with respect to norm $\|.\|_{BMO}$. The John-Nirenberg inequality for BMO yields that for any $1 < q < \infty$ and $f \in BMO(\mathbb{R}^n)$, the BMO norm of f is equivalent to

$$||f||_{BMO^q} = \sup_{x \in \mathbb{R}^n, r > 0} \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_{B(x,r)}|^q dy \right)^{\frac{1}{q}}$$

Recall that for any $\mathbf{p}=(p_1,\cdots,p_n)\in(1,\infty)^n$, the John-Nirenberg inequality for mixed norm space [19,20] shows that the BMO norm of all $f\in BMO(\mathbb{R}^n)$ is also equivalent to

$$||f||_{BMOP} = \sup_{x \in \mathbb{R}^n, r > 0} \frac{||(f - f_{B(x,r)})\chi_{B(x,r)}||_{LP}}{||\chi_{B(x,r)}||_{LP}}.$$
(4.2)

The following property for BMO functions is valid.

Lemma 4.1 Let $f \in BMO(\mathbb{R}^n)$. Then for all 0 < 2r < t, we have

$$|f_{B(x,r)} - f_{B(x,t)}| \lesssim ||f||_{BMO} \ln \frac{t}{r}.$$
 (4.3)

The following lemma gives us explicit estimates for the $L^{\mathbf{p}}(\mathbb{R}^n)$ norm of $\mu_{\Omega,b}$ on a given ball $B(x_0,r)$.

Lemma 4.2 [1, Lemma 4.2] Let Ω be satisfy the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Let also $1 < \mathbf{p} < \infty$ and $b \in BMO(\mathbb{R}^n)$. Then the inequality

$$\|\mu_{\Omega,b}f\|_{L^{\mathbf{p}}(B(x_{0},r))}$$

$$\lesssim \|b\|_{BMO} r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) t^{-1 - \sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt$$

$$(4.4)$$

holds for any ball $B(x_0, r)$ and all $f \in L_{loc}^{\mathbf{p}}(\mathbb{R}^n)$.

Now we give the boundedness of $\mu_{\Omega,b}$ on the total mixed Morrey space.

Theorem 4.1 Let Ω be satisfy the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Let also $1 < \mathbf{p} < \infty$, $b \in BMO(\mathbb{R}^n)$, $0 \le \lambda \le n$ and $0 \le \mu \le n$. Then the operator $\mu_{\Omega,b}$ is bounded on $L^{\mathbf{p},\lambda,\mu}$ Moreover,

$$\|\mu_{\Omega,b}f\|_{L^{\mathbf{p},\lambda,\mu}} \leq \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda,\mu}}.$$

Proof. From the inequality (4.4) we get

$$\begin{split} &\|\mu_{\Omega,b}f\|_{L^{\mathbf{p},\lambda,\mu}} = \sup_{x \in \mathbb{R}^n, \, r > 0} [r]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \left[1/r\right]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \|\mu_{\Omega,b}f\|_{L^{\mathbf{p}}(B(x,r))} \\ &\lesssim \|b\|_{BMO} \sup_{x \in \mathbb{R}^n, \, r > 0} [r]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \left[1/r\right]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} r^{\sum_{i=1}^n \frac{1}{p_i}} \\ &\times \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) t^{-1 - \sum_{i=1}^n \frac{1}{p_i}} \|f\|_{L^{\mathbf{p}}(B(x_0,t))} \, dt \\ &\lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda,\mu}} \sup_{x \in \mathbb{R}^n, \, r > 0} [r]_1^{-\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \left[1/r\right]_1^{\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} r^{\sum_{i=1}^n \frac{1}{p_i}} \\ &\times \int_r^{\infty} \left(1 + \ln \frac{t}{r}\right) t^{-\sum_{i=1}^n \frac{1}{p_i}} [t]_1^{\frac{\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \left[1/t\right]_1^{-\frac{\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \frac{dt}{t} \\ &\lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda,\mu}} \sup_{x \in \mathbb{R}^n, \, r > 0} [r]_1^{-\frac{n-\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \left[1/r\right]_1^{-\frac{n-\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \\ &\times \int_r^{\infty} \left(1 + \ln \frac{t}{r}\right) [t]_1^{-\frac{n-\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \left[1/t\right]_1^{\frac{n-\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \frac{dt}{t} \\ &= \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda,\mu}} \sup_{x \in \mathbb{R}^n, \, r > 0} \int_1^{\infty} (1 + \ln t) [t]_1^{-\frac{n-\lambda}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} [1/t]_1^{\frac{n-\mu}{n} \left(\sum_{i=1}^n \frac{1}{p_i}\right)} \frac{dt}{t} \\ &\lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda,\mu}}. \end{split}$$

Thus the proof of the theorem is completed.

By taking $\mathbf{p}=(p,\ldots,p)$ in Theorem 4.1, we obtain the boundedness of $\mu_{\Omega,b}$ on the total Morrey spaces.

5 Marcinkiewicz operators with rough kernel associated with the Schrödinger operators $\mu_{i,\Omega}^L$ and its commutator $\mu_{i,\Omega,b}^L$ in total mixed Morrey spaces

Let us consider the Schrödinger operator

$$L = -\Delta + V$$
 on \mathbb{R}^n , $n > 3$,

where V is a non-negative, $V \neq 0$, and belongs to the reverse Hölder class B_q for some $q \geq n/2$, i.e., there exists a constant C > 0 such that the reverse Hölder inequality

$$\left(\frac{1}{|B(x,r)|} \int_{B(x,r)} V^{q}(y) dy\right)^{1/q} \le \frac{C}{|B(x,r)|} \int_{B(x,r)} V(y) dy$$

holds for every $x \in \mathbb{R}^n$ and 0 < r < 1. In particular, if V is a nonnegative polynomial, then $V \in B_1$.

Obviously, $B_{q_2} \subset B_{q_1}$, if $q_2 > q_1$. The most important property of the class B_q is its self-improvement, that is, if $V \in B_q$, then $V \in B_{q+\epsilon}$ for some $\epsilon > 0$.

In this section, we prove the boundedness of the Marcinkiewicz operators with rough kernel associated with the Schrödinger operators $\mu_{j,\Omega}^L$ and its commutator $\mu_{j,\Omega,b}^L$ on total mixed Morrey space $L^{\mathbf{p},\lambda,\mu}$.

For $x \in \mathbb{R}^n$, the function $\rho(x)$ is defined by

$$\rho(x) = \sup_{r>0} \left\{ r : \frac{1}{r^{n-2}} \int_{B(x,r)} V(y) dy \le 1 \right\}.$$

Lemma 5.1 [26] Let $V \in B_q$ with $q \ge n/2$. Then there exists $l_0 > 0$ such that

$$\frac{l}{C} \left(1 + \frac{|x - y|}{\rho(x)} \right)^{-l_0} \le \frac{\rho(y)}{\rho(x)} \le C \left(1 + \frac{|x - y|}{\rho(x)} \right)^{l_0/(l_0 + 1)}.$$

In particular, $\rho(x) \sim \rho(y)$ if $|x - y| < C\rho(x)$.

Lemma 5.2 [26] Let $V \in B_q$ with $q \ge n/2$. For any l > 0, there exists $C_l > 0$ such that

$$\left|K_j^L(x,y)\right| \leq \frac{C_l}{\left(1+\frac{|x-y|}{\rho(x)}\right)^l} \frac{1}{|x-y|^{n-1}},$$

and

$$\left| K_j^L(x,y) - K_j(x-y) \right| \le C \frac{\rho(x)}{|x-y|^{n-2}}.$$

Analogously proof of Lemma 3.1 and Theorem 3.1 the following results is valid.

Lemma 5.3 Let Ω be satisfy the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Then for $1 < \mathbf{p} < \infty$, the inequality

$$\|\mu_{j,\Omega}^L f\|_{L^{\mathbf{p}}(B(x_0,r))} \lesssim r^{\sum_{i=1}^n \frac{1}{p_i}} \int_{2r}^{\infty} t^{-1-\sum_{i=1}^n \frac{1}{p_i}} \|f\|_{L^{\mathbf{p}}(B(x_0,t))} dt$$

holds for any ball $B(x_0, r)$ and all $f \in L^{\mathbf{p}}_{loc}(\mathbb{R}^n)$.

Theorem 5.1 Let Ω be satisfy the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Let also $1 < \mathbf{p} < \infty$, $0 \le \lambda \le n$ and $0 \le \mu \le n$. Then the operator $\mu_{j,\Omega}^L$ is bounded on $L^{\mathbf{p},\lambda,\mu}$ Moreover,

$$\|\mu_{i,\Omega}^L f\|_{L^{\mathbf{p},\lambda,\mu}} \le \|f\|_{L^{\mathbf{p},\lambda,\mu}}.$$

Analogously proof of Lemma 4.2 and Theorem 4.1 the following results is valid.

Lemma 5.4 Let Ω be satisfy the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Then for $1 < \mathbf{p} < \infty$ and $b \in BMO(\mathbb{R}^n)$, the inequality

$$\|\mu_{j,\Omega,b}^L f\|_{L^{\mathbf{p}}(B(x_0,r))} \lesssim \|b\|_{BMO} r^{\sum_{i=1}^n \frac{1}{p_i}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) t^{-1 - \sum_{i=1}^n \frac{1}{p_i}} \|f\|_{L^{\mathbf{p}}(B(x_0,t))} dt$$

holds for any ball $B(x_0, r)$ and all $f \in L^{\mathbf{p}}_{loc}(\mathbb{R}^n)$.

Theorem 5.2 Let Ω be satisfy the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Let also $1 < \mathbf{p} < \infty$, $b \in BMO(\mathbb{R}^n)$, $0 \le \lambda \le n$ and $0 \le \mu \le n$. Then the operator $\mu_{1,\Omega,b}^L$ is bounded on $L^{\mathbf{p},\lambda,\mu}$ Moreover,

$$\|\mu_{j,\Omega,b}^L f\|_{L^{\mathbf{p},\lambda,\mu}} \le \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda,\mu}}.$$

Acknowledgements. The authors would like to express their gratitude to the referees for his very valuable comments and suggestions.

References

- 1. Akbarov, A.A., Isayev, F.A., Ismayilov, M.I.: *Marcinkiewicz integral and its commutator on mixed Morrey spaces*, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci **45**(1) Mathematics, 3-16 (2025).
- 2. Akbulut, A., Celik, S., Omarova, M.N.: Fractional maximal operator associated with Schrödinger operator and its commutators on vanishing generalized Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci **44**(1) Mathematics, 3-19 (2024).
- 3. Akbulut, A., Guliyev, R., Ekincioglu, I.: *Calderon-Zygmund operators associated with Schrödinger operator and their commutators on vanishing generalized Morrey spaces*, TWMS J. Pure Appl. Math. **13**(2), 144-157 (2022).
- 4. Akbulut, A., Kuzu, O: *Marcinkiewicz integrals associated with Schrödinger operator on generalized Morrey spaces*, J. Math. Inequal. **8**(4), 791-801 (2014).
- 5. Akbulut, A., Omarova, M.N., Serbetci, A.: Generalized local mixed Morrey estimates for linear elliptic systems with discontinuous coefficients, Socar Proceedings No. 1, 136-142 (2025).
- 6. Bagby, R.L.: An extended inequality for the maximal function, Proc. Amer. Math. Soc. 48(2), 419-422 (1975).
- 7. Benedek, A., Panzone, R.: The spaces L^P with mixed norm, Duke Math. J. **28**(3), 301-324 (1961).
- 8. Celik, S., Guliyev, V.S., Akbulut, A.: Commutator of fractional integral with Lipschitz functions associated with Schrödinger operator on local generalized mixed Morrey spaces, Open Math. 22, 20240082 (2024).
- 9. Celik, S., Akbulut, A., Omarova, M.N.: Characterizations of anisotropic Lipschitz functions via the commutators of anisotropic maximal function in total anisotropic Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci **45**(1) Mathematics, 25-37 (2025).

- 10. Dziubański, J., Zienkiewicz, J.: Hardy space H¹ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iber. **15**, 279-296 (1999).
- 11. V.S. Guliyev, J.J. Hasanov, Y. Zeren, *Necessary and sufficient conditions for the bound-edness of the Riesz potential in modified Morrey spaces*, J. Math. Inequal. **5** (2011), no. 4, 491-506.
- 12. Guliyev, V.S.: *Maximal commutator and commutator of maximal function on total Morrey spaces*, J. Math. Inequal. **16**(4), 15091524 (2022).
- 13. Guliyev, V.S., Akbulut, A., Čelik, S.: Fractional integral related to Schrödinger operator on vanishing generalized mixed Morrey spaces, Bound. Value Probl. (2024), Article number: 137 (2024).
- 14. Guliyev, V.S., Isayev, F.A., Serbetci, A.: *Boundedness of the anisotropic fractional maximal operator in total anisotropic Morrey spaces*, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. **44**(1) Mathematics, 41-50 (2024).
- 15. Guliyev, V.S.: Characterizations of commutators of the maximal function in total Morrey spaces on stratified Lie groups, Anal. Math. Phys. 15:42 (2025).
- 16. Guliyev, V.S., Akbulut, A., Isayev, F.A., Serbetci, A.: *Commutators of maximal function with BMO functions on total mixed Morrey spaces*, Journal of Contemporary Applied Mathematics **16**(1), 1-15 (2026).
- 17. Hasanov, A., Hasanov, S.G., Nazkipinar, A.: *Marcinkiewicz integral with rough kernel in local Morrey-type spaces*, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci **43**(4) Mathematics, 96-104 (2023).
- 18. Hamzayev, V.H., Mammadov, Y.Y.: Commutators of Marcinkiewicz integral with rough kernels on generalized weighted Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci 43(1) Mathematics, 55-65 (2023).
- 19. Ho, K.P.: Strong maximal operator on mixed-norm spaces, Ann. Univ. Ferrara, **62**(2), 275-291 (2016).
- 20. Ho, K.P.: *Mixed norm lebesgue spaces with variable exponents and applications*, Riv. Mat. Univ. Parma **9**(1), 21-44 (2018).
- 21. Morrey, C.B.: *On the solutions of quasi-linear elliptic partial differential equations*, Trans. Amer. Math. Soc. **43**(1), 126-166 (1938).
- 22. Nogayama, T.: *Boundedness of commutators of fractional integral operators on mixed Morrey spaces*, Integral Transforms Spec. Funct. **30**(10), 790-816 (2019).
- 23. Nogayama, T.: *Mixed Morrey spaces*, Positivity **23**(4), 961-1000 (2019).
- 24. Omarova, M.N.: Commutators of parabolic fractional maximal operators on parabolic total Morrey spaces, Math. Meth. Appl. Sci. **48**(11), 11037-11044 (2025).
- 25. Omarova, M.N.: Commutators of anisotropic maximal operators with BMO functions on anisotropic total Morrey spaces, Azerb. J. Math. 15(2), 150-162 (2025).
- 26. Shen, Z.: L^p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) **45**, 513-546 (1995).