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1 Introduction

Fractional integral operator I, of o order has a form
If(z) = / L)n_ady, 0<a<n.
R |2 =y

For locally integrable function b, commutator is defined as follows:

[0, I f(2) := b(z) Lo f(x) = La(bf)(2).

This commutator was introduced by Chanillo [2]. Adams [1] studied the boundedness
I,, from classical Morrey space LP#(R™) to L9*(R™). Conditions for the boundedness of
[b, I] from LP#(R™) to L9*(R™) have been found in [13].
Similar results can be found in [4, 18] and the references cited therein.
Let1 < p < ooand 0 < p < n. Classical Morrey space is defined as follows:
LPHR") == {f € L}, ,(R") := || fll o < 00},
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there will be

»

10 = sup | Q17 / fapde | (1)
Q

supremum is taken over all cubes () C R".

It is known that when 1 < p < oo we have LP*(R") = LP(R") and LP"(R") =
L>*(R™). When p < 0 or pu > n, then LP*(R™) = O(R"), where O is the set of functions
equivalent to zero on R .

Classical Morrey space was introduced by Morrey [16]. Morrey spaces are widely used
to investigate the local behavior of solutions of second-order quasi-liner elliptic partial dif-
ferential equations. LP#- theory of fractional integral operator and its commutator is based
on the following theorems.

Theorem A (Adams [1]) Let0 < a<n,0<u<nandl1 <p< %

(@) if 1 < p < *=F, then

1 1 «

p g n—p
is a necessary and sufficient condition for the boundedness of I, from LP*(R™) to LZ*(R™).
(i) If p = 1, then

oo e
g n—p
is a necessary and sufficient condition for the boundedness of I, from L1#(R™) to W L& (R™).
Theorem B (Komori and Mizuhara [13]). Let 0 < a <nand 1 < p < g 0<pu<
n — ap and % — % = n%u Then, the following conditions are equivalent:
(a)b € BMO(R™).
(b) [b, 1] is bounded from LP#(R™) to LT*(R™).
The following theorem has been proved by Spanne but it was published in the paper of
Petre [17].
1
Theorem C [17]Let0 < a<n,1 <p< g,0<u<n—o¢p,and5—
Then:
(@) if p > 1, I, is bounded from LP*(R™) to L%%(R"), if and only if § = nu/(n — ap)
(i.e. u/p=0/q).
(b)if p = 1, I, is bounded from L'#(R™) to W L9%(R"), if and only if = nu/(n—a)
(i.e. 0 = uq).
'Mwme@MmeDmm<a<nJ<p<nMﬂ<u<n—ap%—%:
and 0 = nu/(n — a) (.e. u/p =0/q).
Then, the following conditions are equivalent:
(a)b € BMO(R™).
(b) [, I,] is bounded from LP*(R™) to L% (R™).

1_ o
q  n’

3e

2 Definitions, notations and auxiliary results

All of this study is based on the differential Gegenbauer operator

2

d 1
22+ 1) z— 1 A -
s@ADeg, velloo), Ae (o).

which was introduced in [3].
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Generalized shift operator (GSO) associated with operator G has a form [5]

I (A —+ 1 ™
( ) / f(chaxchy — shxshy cos ¢)(sin 90)2/\71d<p_

Achyf<0h$) = m )

This operator has all properties of generalized shift operator listed in the works of
Levitan ([14], [15]). Denote by L,(R;,G) = Lpi(R4), 1 < p < oo the space of
px(z) = sh® x measurable functions on R = [0, 00) with the finite norm

ey = ([ IstenP ) 1< < o

Iz sy = WLy = esssup [f(cha)],
’ zeRy

dpy(z) = sh®* xdx.
Let’s ug = |E|) = fd/u\ from any measurable set E C R.. Denote by WL, y(R4), 1

p < 0o, the weak space Lp, A(R4) of locally integrable functions f(chx), = € R, with the
finite norm

1
HfHWpr/\(Rﬁ_) = 51;187" [{z € Ry« |f(chz)| > r}[}

»
=supr / shPzdz | . 1<p< oo,
r>0 {z€Ry:|f(chx)|>r}

Further, A < B will mean that there exits constant C', which may depend on nonessen-
tial parameters such that 0 < A < CB.If A < B and B < A, then we’ll write A ~ B and
say that A and B are equivalent.

Let H, = (0,7) C R,. Below, we’ll need the following relation [12, lemma 2.3]

T

|H:|y = /shz/\:vdx ~ <shg>7,

0

WhereO<)\<%
- 22 +1, 0<r<2,
v=nr) = 4\, 2<7r < oo

By analogy with (1.1) in [7] the following definitions are introduced.

Definition 2.1. Let 1 < p < 00,0 < A < % and 0 < v < . Denote by the Gegenbauer-
Morrey (G-Morrey space) Ly, 5, (R ) space associate with the differential Gegenbauer op-
erator G on the set of locally integrable functions f(chx), x € R with the finite norm

1l = sup |1y /Achyuchm P dun(a) |

r>0,0€R

Therefore, by definition, we have

Loaw(Ry) = (f € LISR) 11, me) < 00)

<
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Let 1 < p < oo. In [8] it was proved, that L, y o(R;) = L, \(R), when v = 0. If
v=r,then L ) (Ry) = Loo(R4), and, if v <O orv > ~,then Ly, 5 ,(Ry) = O(R4).

Definition 2.2. [7] Let 1 < p < oo and 0 < v < . Denote by WL, 5 ,(R) the weak
space Ly, » (R4 ) of locally integrable functions f(chx), x € Ry with the finite norm

{y € [0,8) : Ady, |f(cha) > ry}D ’

t -V
17w ..y = SUP 7sup ((sh2)

r>0,z,teR4

p
t 2
= sup r sup <3h> / dpy(z)
>0z, teR 4 2
{velot):AY,, |f (cha)|>r}

The following concept of G-BMO space is given in [9].
Definition 2.3. By definition,

BMOg(Ry) = {f € LYSRY) : 1 fllparog(r,) < OO}

where

£l mnropen = _sup 1L [ |4, F(cha) = fu (cha) | din(y
r>0,z€R

18 a seminorm, and

fi,(ch) = | H, 3! / Ay, f(chr)dpn (v).
H,

In [5], the fractional maximal function M and fractional Gegenbauer integral J&, v € R,
are defined as follows:

Mg f(che) = sup |H,|5~ / A%, 1f(cha) dpaa(y),

reRy

MEf(cha) = M f(ch),
Ag\hyf(cha:)

(1) dux(y), 0<a<7.

T f(eha) = |

0

For b € Lll"i (R4 ), commutators of these operators are defined in [9] by the following
formulas, respectively:

reRy

Mg»af(chx) = sup ]Hr| v / ’Achy f(chz) — by, (chx) Aé\hy | f(chz)| dux(y),
H,

Ag\hyf(chx) — by, (chz)]

(sng)"°

Jo f(cha) = / |

0

ARy, f(cha)dpy(y).

Further we will need some auxiliary assertions.
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Lemma 2.4. For any 1 < p < oo the following relation [11, lemma 4.2]

p
[ 48w (eh) = i (k)| dis@) | = 1l ssogce,-
Hy

1
sup
r>00eRy \ |[Hrly

is true.
Lemma 2.5. [10] Let f € BMOg. For any interval H, C R, and positive integer m,
the following inequality

| fr, (cha) — foxmp, (cha)| < 2m ”fHBMOG(RJr) :

18 true.

Lemma 2.6. [7] For any ¢ € [0, A] C R, the following ¢ < sht < e“t is true for any
A>0.

3 Main results

The following theorems are analogues of the corresponding theorems A, B, C.
Theorem E [10, Adams type]. Let yx(r) = 2A + 1if 0 < r < 2 and y,(r) = 4\ if

2<r<oo,0<a<yy(r),l<p< “T(r),()<1/<7)\(r)—ozpand%—é: ’Y/\(:})_V'
Then, Jg’o‘ is bounded from L,),(Ry) to Lgy,(Ry), if and only if
b e BMOG(R,).

Theorem F [8, Spanne type.]. Let 0 < a < y»(r), 1 <p < 0w <y < (r) —ap

«
andi - 1—-_o_
P qa = )

Then, J¢ is bounded from Ly, y , (R+.) to Lg 5 . (R+.), if and only if = = £.
Theorem G [7, Adams type]. Let v\ (r) = 2A + 1,if 0 < r < 2 and v, (r) = 4\, if
2<r<o0,0<a<y(r),0<v<y(r)—apandl1 <p< nr)-v

—v
«
Dif1 < p< 207V then

«

123
q

1 1 «

p q nr)-v

is the necessary and sufficient condition for the boundedness J& from L, ) ,(R4) to Ly » , (R).
(i) Ifp=1< 207" then

)=
T
q n(r)—-v

is the necessary and sufficient condition for the boundedness J& from Ly  ,(R4) to W Lg » , (Ry).

The proof of the theorem for commutators Jé’;’a and M, g’o‘ which is an analogue of The-
orem D [18] is the aim of this paper.

Theorem 3.1 (Main theorem, Spanne type). Let 0 < o < v\ (1), 1 < p < ”T(r)
0<1/<fyA(r)—ap,%—%: Sy and 5 =14

Then Jga is bounded from L), ) ,(R) to Ly ,(R,) if and only if b € BMOg(R..).
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Proof. (Sufficiency). Let 0 < o < 7,1 < p < =¥ and b € BMOg(R). The proof
technique that is implemented here allows us not to consider each case separately when
r € (0,2)orr € [2,00).
Denote
E, - { (0,2) if y=2X\+1
[2,00)if y=4X =

Let’s estimate the commutator Jga above.

ba ‘Achyb (chx) bHr(ch:r)‘ \
‘JG Chx (/ / ) Shy)v a Achy‘f(Chx)‘d:uz\(y)

= Ji(z,r) + Ja(z,r). (3.1

Consider the integral J; (x, ).

a—y
By = [ |3, bleha) — by, (chr)] Al f(eh)| (shS)" dua(y)
& /T/Qk ’Achy chm)—bHT(chx)’Aé‘hy]f(chx)]dﬂ y
Nkzo /21 (Sh%)’y—a A
. r/2k
.
S (shyrrr) (shyrrr) [ 1A3bcha) — b (cho) AY, |F (cha)ldia (9132

For§ > 0 and f € LY(R.), denote

1
5
1
Mg s f(chz) = sup /|Achy F(cha)Pdpx(y)
r>0 |Hr‘)\H

Letd <e <1, r+7¢" =rr'andr = § > 1. By Hélder’s inequality, we have

/’Achy (chx) (ch:c)|Achy|f(ch:c)|du/\(y)
/|Achy (chx) (chx)\&“’dm(y)]#

[(Sh) /0 Ayl F (ch) P dpa ()]

S bl BrvograyMa.ef(chz) < |bll Brrog )y Ma f(chz), (3.3)

Since by the inverse Holder’s inequality [[11], Lemma 4.2], we have Mq . f(chx) <
Mg f(chx).
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Using (3.3) in (3.2), we get the following

I(@,1) S Dlpaoaee o Maf(cha)y (shr)
k=0

r « - —RQ
5(5h§) ||b||BMOg(R+)MGf(Chx)Z2 F
k=0

r
S (Shi)a||b||BMoG(R+)MGf(Ch$)-
By Holder’s inequality, we have
-

Tiar) = (sh)sup(sh ) [ 48 |f(cha)ldualy)

r>0

0
1 1
13 r p/
S (sh) sup(sh)” / A lreoPan) | | [duw)
0
< (shiye Byt R
< (shg)"sun(s 2) 112y 5, (R)
r>0
T @ r.rx—
S (Shi) SUP(Shﬁ) P fllepn, (Ry), 7€ Ey (3.4)
r>0

Consider the integral Jo(z, r). According to Holder’s inequality, we have

[e.9]

aowr) | [ )50l (shd) ™" duntw)

r

/ L
/ ‘Achy (chx) — by, (chx) ! '
X — dp(y)
, (sh%)(v a—B/p)p
= Joa(x,r) - Jaa(x,7), 7€ E,. (3.5)

Let v < 8 < v — ap. Taking into account the inequality shat > asht where a > 1, and
Lemma 2.6, we get the following:

8
[\
<.
+
I
RS

o) < [ 3 /QJ_ A3, f(eha) (s2) " dus(w)

[\
<.
+
Ns
3 =

chy‘f Ch(]?)‘ d,u)\( )

A
(]2
—
—| »
=
2| T
+ —
— 3
<3 [N—
~— AN
isy)
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1
00 2]+1 ht )V g /21+17" !
- AN | f(cha)[Pdpy(y)
< 17’ chy
= sh2J+ 0
1
v—5 > ’
" G+ (=)
< (Sh2) ||f||Lp,)\,u(R+) ZQ ’
7=0
7,. v—
N ( ) ||f||L oot TE By o

In the same way, taking into account the Lemma 2.4, we get the following for J3 o(z, r):

1
/ =
Y

Yt Aghyb cha) — b (chz)|”

J22 -7) T Zé )(’Y—a—ﬁ/p)p' dﬂ)\(y)

2j+1 , p

p
chyb(Chx) - bHr(Ch(L') dpix (y)

z:;) <8h2j;>(ﬂ/p+a—v)p’/0

g (shQM)V*(V*a B/p)p'  git+1, y -
< 2 B
- Z (sh275)” / ab(che) = ba, (che) | dua(y) |

Taking into account the Minkowski inequality and the Lemma 2.5, we have

2]'+1
0
2i+1,
< (&
2J+1

1
Y

Ag\hyb(chx) — by, (chx)

gy

/

dpx(y)

1
Y

(chx) — byj+1py, (chx) :

chy

Y N—e——

(chx) — boj+1y, (chx) |p du,\(y)>

Then

.E\

r\/P+B8/p+a—y o e ,
) 1]l Brrog R ) ZQJ(W (y—a—B/p)p

Joo(x, 1) < (shf

2 ,
7=0
+(B—)/
S (5h5) T bl sarogyy s € B (3.7)
Using (3.6) and (3.7) in (3.5), we get
a+(v—=y)/p
J(r) S (shy)" 1£llz, oy Wbllzaogs): ™€ B (38)

From (3.4), (3.8) and (3.1), we have

b,ox T\ T (v—
‘JG f(chx)’ S (Sh§> §§%<Sh§)( /P HfHLp,/\,V(R-!—)’ reE,.
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From here it follows that

1
T\ H r b.ov q q
= sup sh— / ‘J’ cha:‘ d >
Loau(Ry) r>0,c€R 4 << 2> 0 “ f( HA(y)

1
r w-/o-nja | [ ’
5,31;13 (sh2> (sh JTET ”q</0 dux(y)) Ifllz, )

(v=7)/p—/a+
S >0 <5h§> (Shg) Ly, @)

7\«
< (]./p 1/q
~ b <3h2> (Sh )7 I£llz, 5 )

r o r —Q
= sup(sh )" (sh5) " Ifl1, ) S 10, 00

s

Necessity. Let 1 < p < v/a, f € L, (R4 ) and Jg’o‘ be bounded from L, » , (R4 ) to
Lq)\”u (R+), that is

s

Sl

9, p
The necessity of this theorem is proved in the same way as the necessity of theorem F.
In order to do this, it is sufficient to replace the fractional integral J& with the commutator

Jga. Therefore, we only provide a schematic proof of the necessity. In order to do this, we
use the stretch operator f; which was introduced in [7]. Let f be a positive and increasing
function. The stretch operator f; has a form

f <ch <th;> :v> < fi(chx) < f <ch <ch;> ac) , 0<t <2,
f <ch <th;> x> < fi(chx) < f <ch <sh;> a:> , 2<t < . (3.10)

According to (3.10), it is proved that [see [7], for (3.37)]

. - (3.9)

Ifellp,,, = swp | |Hl," /Achy]ft (cha)|Pdpx(y)

z,reRL

£\ ot 7)/
~ <sh2> Ifllz, ., t € By, (3.11)

and also [see [13], for (3.48)]

+\ (—w/a X
~ <3h2) (E7 L teE, (3.12)
Then, according to (3.9), from (3.11) and (3.12), it follows that

(v=w)/q X
(sh ) HJG’O‘ft’

£\ v/P—rla
<(smg) 0L

e

Ly

X

e

L L

;A p ;A p

€ E,.

p)\u
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Now,if%—% > O thent — 0,

b,af)

b’af‘ = 0, forany f € Ly, (Ry), and, if
A1

=0, forany f € Ly, (R).

@A

v

5—H<O,thent—>oo,

Therefore, ¥ = £
P q

We still need to prove b € BM O¢.

Let xH, - be a characteristic function for interval H,. Using the property of symmetry

of GSO, AQM f(chy) = A, f(chz), and inequality (3.9), we get

1
AR [ [A8ptetia) = b, (cho)| dr(v)

A? yb(Chx) — by, (chx)| (sh¥)"™*
= |H1‘)\/‘ h ( H ‘( 2) di (o)

shﬂ)w_a

|H ‘1** ‘Achy ch:n) bHT(chx)‘
/ 0
h§)

< |H, | X, (chy)dpa(y)
TIX
‘Achy (chx ) b, (Chx)‘ 00 .
+3 XHT(Chy)d,UO\(y) AchyXHrd/i)\(x)
¥ ﬂ
|H |)\ 0 2 b
Ac T Chy bHT (Ch-’E)
- ’ ‘ /| : hy Y- |ActhHr(Chy)d,U/\(»’U) xH, (chy)dux(y)
H, |, s
1
- / VACACENLNG
|Hr‘)\ 0

1
Py

S e | famw || [ (7 0o b)) draw) q

o
[Hely " \g, i,
L B 51
rg 14« ’Hr‘g\ ’H"";\W 7 (XHT') < ’H ‘)\ ! ’H ’;\Yq HXHrHLp A\
| Hyly 7 s

_a_1 1—-x I
<V E T =1, e B

4 Commutator of fractional maximal operator

In this section, we find the necessary and sufficient conditions for the boundedness of M, é,a
from Ly x, (R) t0 Lgxu(Ry).

Theorem 4.1. Let 0 < o < )\ (r),1 < p < %T(T), %

1 o v
= = — n - =
q w(r)adp

Then the commutator Mg’a is bounded from L, 5 , (R4) to Lg » (R4 ) if and only if b
BMOg(Ry).

L
7
S
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Proof. Let b € BMOg(R,). For fixed 2z € R, we have
A b(chx) — by, (chx)‘

chy
(shg)" "

b s
TG (| f]) (cha) = / Adpy|f (chax) dpux(y)

0

onb(chx) — by, (chx)
2/ ! (Sh%)'yia ‘ chy‘f(Ch‘T)‘d:u)\( ) (41)

0

. r
= o chy - Yy chy
> (sh5)" [ [Abblcha) ~ bu, (cha)| Ay | f(cha) dia )
0

21T [ by blcha) — b, (cha)| A 1 (cho)dis o).
H
By taking supremum with respect to > 0 on both sides (4.1), we get
Mg® f(cha) S Jg(1 fI)(cha), Vo € Ry.
Then, for b € BMO¢(R. ), by Theorem 3.1, we have
b,a
RV S TP

DA,V :
A p o

Now, let M, g,a be bounded from L, » , (R ) to Ly » (R4 ), then taking into account the
symmetry of the GSO, we get

r [ [Adbeho) — bu )| dis )
H,

- i [ Ay behe) = b )| dis0) [ A, (chy)da)
A
H, ,

| H|

1
1+°‘/ | | _/‘Achm Chy) _bHr(Chy)‘AchxXHr(Chy)d,u)\( ) dM,\(Z/)
ol H vl

H, |A ) )
< e M G (k) dia(v)
7,

1
! q

|H|11+ Jamw || [ (2 e ) it
A

H, H,
1 .
< T iye | H, |)\ G XHT ’Hruq
[ Hly 7 whn
< 1 a’ %
~ T2 |Hr|)\ ||XHT||LP’A’,, |H, A
[H, [y "

—= |H:|\ |H, H.|J* =1, re€ k.
|Hy |3 |Hrly |Hy |y 1 €
=
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Thus, b € BMOg(R,).

Remark 4.2 Similar results can be found in the work [12].
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