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Asymptotics of the solution of a boundary value problem in a
curvilinear trapezoid for a singularly perturbed quasilinear elliptic
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Abstract. In a curvilinear trapezoid we consider a boundary value problem for a second order singularly
perturbed quasilinear elliptic equation degenerated into a hyperbolic equation. The asymptotic expansion
of the generalized solution of the problem under consideration is constructed to within any positive degree
of the small parameter and the remainder term is estimated.
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1 Introduction and problem statement

When studying numerous real phenomenon with nonuniform transitions from one physical
characteristics to another ones, it is necessary to study singularly perturbed boundary value
problems (see e.i. [5], [17]). The study of singularly perturbed boundary value problem
originally was carried out from various positions by A.N.Tikhonov [16], L.S.Pontryagin
[9], M.I.Vishik and L.A.Lyusternik [18], [19], V.Vazov [21], S.A.Lomov [8], A.M.Il’in [6]
and other scientists.

At present there exist various ways for constructing asymptotic expansions of solutions
of singularly perturbed boundary value problems. The method developed by M.I.Vishik and
L.A.Lyusternik (at present this method is called the Vishik-Lyusternik method [18], [19])
has on undoubted advantage. It is based an two ideas ascending to Prandtle: the idea of
regulating stretching and the idea of boundary layer corrections.

The Vishik-Lyusternik method for constructing asymptotics in a small parameter takes
the solutions of boundary value problem for linear differential equations also to some
classes of nonlinear differential equations. In [20] M.I.Vishik and L.A.Lyusternik illustrated
a method for constructing nonlinear differential equation on the following boundary value
problem:

εy′′ + ϕ (x, y) y′ − ψ (x, y) = 0, y (0) = A, y (1) = B.
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There are a lot of works devoted to singularly perturbed elliptic differential equation. In
[19] M.I.Vishik and L.A.Lyusternik have studied a boundary value problem of the form:

εL2u+ L1u = n (x, y) , u|Γ = 0,

where ε > 0 is a small parameter, L2 is a second order general elliptic operator,
L1 ≡ ∂

∂x − f (x, y)u, Γ is a boundary of the plane domain. It should be noted that here
the solution of the degenerated problem has singularities at the points of intersection of the
characteristics of the degenerated equation and the boundary Γ .

In [7], V.Yu. Lunin in the bounded domain Ω with the smooth boundary Γ constructed
asymptotics expansion of the solution to the following boundary value problem:

−ε4
n∑
i=1

∂

∂xi

(
∂u

∂xi

)3

− ε2
n∑
i=1

∂2u

∂x2i
+ F (x, u) = 0, u|Γ = 0.

In the rectangle D = {(x, y)| 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} the boundary value problem was
considered by the author of this paper in [10]

−εp
[
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(
∂u

∂x

)p
+

∂
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(
∂u
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)p]
− ε∆u+

∂u

∂x
+
∂u

∂y
+ F (x, y, u) = 0, u|Γ = 0.

The Dirichlet problem was studied by I.V.Denisov in the papers [2], [3] in a rectangle
for the elliptic equation

ε2∆u = F (u, x, y, ε) .

In the paper [4] the equation

ε∆u− v (x)u+ up = 0, u ∈ H1
0 (Ω)

was considered in the domain Ω ⊂ Rn and the solutions of the final energy of this equation
as ε→ 0 were studied.

Boundary value problems in a rectangle, in a semi-infinite strip, in an infinite strip for
the following quasilinear elliptic equation degenerated into a parabolic equation have been
considered in the papers [11], [12], [13]:

−εp
[
∂
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(
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)p
+

∂

∂y

(
∂u

∂y

)p]
− ε∆u+

∂u

∂x
− ∂2u

∂y2
+ au− f (x, y) = 0.

At present, the construction of the asymptotics of the solution to singularly perturbed
boundary value problems is very relevant and in this connection, the studies in this direction
are successfully developed. We indicate some of them: [14], [15], [22-24].

The cursory review conducted above shows that the studied boundary value problems for
singularly perturbed equations were considered in the domains with smooth boundary, in a
rectangular domain, in infinite semi-strips and infinite strips. It is a certain scientific interest
to study boundary value problems in domains having the form of a curvilinear trapezoid. I
would like to note that the idea of considering such boundary value problem once was given
me by prof. M.I.Vishik.

In the present paper we consider a boundary value problem in a curvilinear trapezoid for
a singularly perturbed quasilinear elliptic operator degenerated into a hyperbolic equation.

Let x = ϕ1 (y) , x = ϕ2 (y) be rather smooth functions determined in [a, b] and satisfy
the following conditions:
a) ϕ1 (y) < ϕ2 (y) for y ∈ [a, b] ;
b) ϕ1 (y) < y and ϕ2 (y) > y for y ∈ [a, b] ;
c) ϕ1 (a) = a, ϕ2 (b) = b;
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d) ϕ′1 (y) < 1, ϕ′2 (y) < 1 for y ∈ [a, b].
The functions ϕ1 (y) = y− (y − a)3 , ϕ2 (y) = (b− y)3+ y can be shown as examples

of such functions.
We introduce the denotations:

Γ1 = {(x, y)|x = ϕ1 (y) , a ≤ y ≤ b} , Γ2 = {(x, y)|ϕ1 (y) ≤ x ≤ ϕ2 (y) , y = b} ,

Γ3 = {(x, y)|x = ϕ2 (y) , a ≤ y ≤ b} , Γ4 = {(x, y)|ϕ1 (y) ≤ x ≤ ϕ2 (y) , y = a} .
In Ω = {(x, y)|ϕ1 (y) ≤ x ≤ ϕ2 (y) , a ≤ y ≤ b} we consider the following boundary
value problem:

Lεu ≡ −εp
[
∂

∂x

(
∂u

∂x

)p
+

∂

∂y

(
∂u

∂y

)p]
− ε∆u+

∂u

∂x
+
∂u

∂y
+ F (x, y, u) = 0, (1.1)

u|Γ = 0 (1.2)

where ε > 0 is a small parameter, p = 2k + 1, k is an arbitrary natural number,
Γ = Γ1

⋃
Γ2
⋃
Γ3
⋃
Γ4, F (x, y, u) is the given smooth function satisfying the follow-

ing conditions:

∂F (x, y, u)

∂u
≥ γ2 > 0 for (x, y, u) ∈ (Ω\ {(x, y) ∈ Ω|x = y}) × (−∞,+∞) . (1.3)

In this case, the function F (x, y, u) can depend on u as linearly, i.e.

F (x, y, u) = d (x, y)u− f (x, y) , d (x, y) ≥ γ2 > 0.

It is known that for every fixed ε there exists a unique solution to the problem (1.1), (1.2) in

the class
0

Wp+1 (Ω). Obviously, if F (x, y, 0) ≡ 0 the problem (1.1), (1.2) has only a trivial
solution. Therefore, we assume that

F (x, y, 0) 6= 0 for (x, y) ∈ Ω. (1.4)

Our goal is to construct the asymptotic expansion in a small parameter of the general-

ized solution to the boundary value problem (1.1), (1.2) from the space
0

Wp+1 (Ω). In this
connection we conduct iteration processes.

2 Conducting the first iteration process and the solution of the degenerated problem

In the first iteration process, we will look for the approximate solution of the equation (1.1)
in the form

w = w0 + εw1 + ε2w2 + · · ·+ εnwn, (2.1)

where the functions wi (x, y) ; i = 0, 1, . . . , n are chosen so that

Lεw = 0
(
εn+1

)
. (2.2)

Having substituted the expression of w from (2.1) to the equality (2.2), expanding
nonlinear terms and regrouping the terms with the same degrees with respect to ε we
obtain the following recurrently connected equations whose solutions are the functions
wi; i = 0, 1, . . . , n:

∂w0

∂x
+
∂w0

∂y
+ F (x, y, w0) = 0, (2.3)
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∂wi
∂x

+
∂wi
∂y

+
∂F (x, y, w0)

∂w0
wi = fi; i = 1, 2, . . . , n, (2.4)

where fi (w0, w1, . . . , wi−1) are the known functions dependent on w0, w1, . . . , wi−1 and
their first and second derivatives. We can write formulas for fi explicitly. However they are
very bulky. Here we give formulas only for f1, f2 and f3:

f1 = ∆w0, f2 = ∆w1 −
1

2!
· ∂

2F (x, y, w0)

∂w2
0

w2
1,

f3 = ∆w2 −
1

2!
· ∂

2F (x, y, w0)

∂w2
0

2w1w2 −
1

3!
· ∂

3F (x, y, w0)

∂w3
0

w3
1.

Equation (2.3) is obtained from equation (1.1) for ε = 0. (2.3) is said to be a degenerated
equation corresponding to equation (1.1). The equations (2.3), (2.4) will be solved under the
following boundary conditions

wi|Γ1
= 0, wi|Γ4

= 0; i = 0, 1, . . . , n. (2.5)

We have the following lemma.
Lemma 2.1. Let ϕ1 (y) ∈ C2(n+1) [a, b] and the function F (x, y, u) ∈ C2(n+1) (Ω)

satisfy the conditions (1.3), (1.4) and also the condition

∂if (x, y)

∂xi1∂yi2

∣∣∣∣
x=y

= 0; y ∈ [a, b] , i = i1 + i2; i = 0, 1, . . . , 2 (n+ 1) , (2.6)

in the case of linear dependence of F on u and the conditions

F (x, y, u)|x=y = 0; y ∈ [a, b] , u ∈ (−∞,+∞) , (2.7)

∂iF (x, y, 0)

∂xi1∂yi2∂ui3

∣∣∣∣
x=y

= 0; y ∈ [a, b] , i = i1 + i2 + i3; i = 0, 1, . . . , 2 (n+ 1) , (2.8)

in the case of nonlinear dependence of F on u. Then for i = 0 the problem (2.3), (2.5) has
a unique solution, moreover w0 (x, y) ∈ C2(n+1) (Ω), and the condition

∂iw0 (x, y)

∂xi1∂yi2

∣∣∣∣
x=y

= 0; y ∈ [a, b] , i = i1 + i2; i = 0, 1, . . . , 2 (n+ 1) (2.9)

is fulfilled.
Proof: The characteristical line of the equation (2.3) passing through the origin of coor-

dinates divides the domain Ω into two parts:

Ω1 = {(x, y)| (x, y) ∈ Ω, x < y} , Ω2 = {(x, y)| (x, y) ∈ Ω, x > y} .

We look for the solution of problem (2.3), (2.5) for i = 0 in the form:

w0 =

{
w

(1)
0 , (x, y) ∈ Ω1,

w
(2)
0 , (x, y) ∈ Ω2,

(2.10)

where w(1)
0 and w(2)

0 are the solutions of the following Cauchy problems:

∂w
(1)
0

∂x
+
∂w

(1)
0

∂y
+ F

(
x, y, w

(1)
0

)
= 0, (x, y) ∈ Ω1; w

(1)
0

∣∣∣
x=ϕ1(y)

= 0, y ∈ [a, b] , (2.11)
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∂w
(2)
0

∂x
+
∂w

(2)
0

∂y
+ F

(
x, y, w

(2)
0

)
= 0,

(x, y) ∈ Ω2; w
(2)
0

∣∣∣
y=a

= 0, x ∈ [ϕ1 (a) , ϕ2 (a)] . (2.12)

When F (x, y, w0) linearly depends on w0, i.e. then the explicit representation of the
solution of problem (2.3), (2.5) for i = 0 is of the form

w0 =


x1∫

ψ(y1)

f (ξ, ξ + y1) exp

[
ξ∫
x1

d (τ, τ + y1) dτ

]
dξ, x1 = x, y1 = y − x, y > x,

y1∫
a
f (x1 + ξ, ξ) exp

[
ξ∫
y1

d (x1 + τ, τ) dτ

]
dξ, x1 = x− y, y1 = y, x > y,

(2.13)
where x1 = ψ (y1) is the solution of the equation x1 = ϕ1 (x1 + y1) with respect to x1.
The solvability of the equation x1 = ϕ1 (x1 + y1) with respect to x1 follows from the
first condition in d). Using formula (2.13) we prove that if condition (2.6) is fulfilled, then
w0 (x, y) ∈ C2(n+1) (Ω) and (2.9) is valid.

In the case of nonlinear dependence of F (x, y, w0) onw0 the problems (2.11) and (2.12)
are reduced to the following Cauchy problems for ordinary differential equations

dw
(1)
0

dx1
= −F

(
x1, x1 + y1, w

(1)
0

)
, w

(1)
0

∣∣∣
x1=ψ(y1)

= 0, x1 = x, y1 = y − x, y > x,

(2.14)
dw

(2)
0

dx2
= −F

(
x1 + y1, w

(2)
0

)
, w

(2)
0

∣∣∣
y1=a

= 0, x1 = x− y, y1 = y, x > y. (2.15)

The existence of local solutions to problems (2.14) and (2.15) is obvious. Using condi-
tion (1.3) we can obtain a priori estimations for these local solutions. From the obtained a
priori estimations it follows the possibility of continuous continuation of local solutions on
Ω1 and Ω2.

To study differential properties of the solution to problem (2.3), (2.5) for i = 0 in the
nonlinear case we reduce this problem to the following integral equations

w0 (x, y) =

=


−

x1∫
ψ(y1)

F (τ, τ + y1, w0 (τ, τ + y1)) dτ, x1 = x, y1 = y − x, y > x,

−
y1∫
a
F (x1 + τ, τ, w0 (x1 + τ, τ)) dτ, x1 = x− y, y1 = y, x > y.

(2.16)

Using formula (2.16), we can prove that if conditions (2.7), (2.8) are fulfilled then
w0 (x, y) ∈ C2(n+1) (Ω) and (2.9) is fulfilled.

Lemma 2.1 is proved.
Problems (2.4), (2.5) for i = 1, 2, . . . , n, from which the functions w1, w2, . . . , wn will

be determined, are linear. The solutions of these problems are written in the explicit from
according to formula (2.13). But in it, instead of functions d (x, y) , f (x, y) we should take
the functions ∂F (x,y,w0)

∂w0
and fi (x, y), respectively. Note that the functions wi (x, y) ; i =

1, 2, . . . , n also will vanish for y = x together with their derivatives.
Thus, we constructed the function w which is the approximate solution of (1.1) in the

sense of (2.2) and satisfies the boundary conditions

w|Γ1
= 0, w|Γ4

= 0. (2.17)
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The constructed functionw does not satisfy, generally speaking, homogeneous boundary
conditions on Γ2 and on Γ3. To compensate the lost boundary conditions it is necessary to
construct boundary layer functions near the boundaries Γ2 and Γ3.

3 Constructing boundary layer type functions near the boundaries Γ2 and Γ3

To construct a boundary layer function near the boundary Γ3 at first we have to write a new
decomposition of the operator Lε near this line. We make a change of variables:

ϕ2 (y)− x = ετ, y = y1.

Let us consider the auxiliary function r =
n+1∑
j=0

εjrj (τ, y1) , where rj (τ, y1) are some

smooth functions determined near the line x = ϕ2 (y). Taking into account this change
of variables, having substituted the expression of r in Lεr, after some transformations we
obtain a new decomposition of the operator Lε in the coordinates (τ, y1) in the form

Lε,1r ≡ ε−1
{
−

[
δ21 (y1)

∂

∂τ

(
∂r0
∂τ

)2k+1

+ δ22 (y1)
∂2r0
∂τ2

+ δ23 (y1)
∂r0
∂τ

]
+

+

n+1∑
j=1

[
− (2k + 1) δ21 (y1)

∂

∂τ

((
∂r0
∂τ

)2k ∂rj
∂τ

)
− δ22 (y1)

∂2rj
∂τ2
−

−δ23 (y1)
∂rj
∂τ

+ hj (r0, r1, . . . , rj−1)

]
+ 0

(
εn+2

)}
. (3.1)

Here hj are the known functions dependent on and τ, y1, r0, r1, . . . , rj−1 their first and
second derivatives. The functions δ21 (y1) , δ

2
2 (y1) , δ

2
3 (y1) are determined by the following

formulae:

δ21 (y1) = 1 +
[
ϕ′2 (y1)

]2k+2
, δ22 (y1) =

[
1 + ϕ′2 (y1)

]2
, δ23 (y1) = 1− ϕ′2 (y1) .

We will look for a boundary layer type function near the boundary Γ3 in the form

V = V0 (τ, y1) + εV1 (τ, y1) + ε2V2 (τ, y1) + · · ·+ εn+1Vn+1 (τ, y1) , (3.2)

as the solution of the equation

Lε,1 (w + V )− Lε,1w = 0
(
εn+1

)
. (3.3)

Expanding each functionwi (ϕ2 (y1)− ετ, y1) in Taylor formula at the point (ϕ2 (y1) , y1),
we obtain a new expansion in powers of ε of the function w in the coordinates (τ, y1).

Having substituted the new expansion of w and expansion (3.2) of the function V in
(3.1) we obtain that the functions V0, V1, . . . , Vn+1 included in the right hand side of (3.2)
are the solutions of the following equations, respectively:

AV0 ≡ δ21 (y1)
∂

∂τ

(
∂V0
∂τ

)2k+1

+ δ22 (y1)
∂2V0
∂τ2

+ δ23 (y1)
∂V0
∂τ

= 0, (3.4)

∂
∂τ

{[
(2k + 1) δ21 (y1)

(
∂V0
∂τ

)2k
+ δ22 (y1)

]
∂Vj
∂τ

}
+

+δ23 (y1)
∂Vj
∂τ = Hj (τ, y1) ,

(3.5)
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whereHj ; j = 1, 2, . . . , n+1 are the known functions dependent on τ, y1, V0, V1, . . . , Vj−1,
their first and second derivatives. The boundary conditions for equations (3.4) and (3.5) are
obtained from the requirements that the sum w + V satisfies the boundary condition

(w + V )|Γ3
= 0. (3.6)

From (3.6) and taking into account that we look for Vj ; j = 0, 1, . . . , n + 1 as boundary
layer type functions we have

V0|τ=0 = ψ0 (y1) , lim
τ→+∞

V0 = 0; y1 ∈ [a, b] , (3.7)

Vj |τ=0 = ψj (y1) , lim
τ→+∞

Vj = 0; j = 1, 2, . . . , n+ 1; y1 ∈ [a, b] , (3.8)

where ψi (y1) = −wi (ϕ2 (y1) , y1) for i = 0, 1, . . . , n; ψn+1 (y1) ≡ 0.
The following lemma is valid.
Lemma 3.1. If ϕ2 (y1) ∈ C2(n+1) [a, b] , then for every fixed y1 ∈ [a, b] the problem

(3.4), (3.7) has a unique solution that is infinitely differentiable with respect to τ and has
continuous derivatives up to the (2n+ 2)−th order inclusively with respect to y1 the func-
tion V0 (τ, y1) and all its derivatives exponentially tend to zero as τ → +∞.

Proof. At first we prove the uniqueness of the solution to the problem (3.4), (3.7). Let
V

(1)
0 (τ, y1) and V (2)

0 (τ, y1) be twice continuously differentiable solutions to problem (3.4),
(3.7). Obviously, the function H = V

(1)
0 −V (2)

0 satisfies the boundary conditions H|τ=0 =
0, lim

τ→+∞
H = 0.

Subtracting the equation AV (2)
0 = 0 from the equation AV (1)

0 = 0, we have:

δ21 (y1)
∂

∂τ

(∂V (1)
0

∂τ

)2k+1

−

(
∂V

(2)
0

∂τ

)2k+1
+ δ22 (y1)

∂2H

∂τ2
+ δ23 (y1)

∂H

∂τ
= 0.

Multiplying the both hand sides of the last equality by −H = −
(
V

(1)
0 − V (2)

0

)
and

integrating by parts allowing for boundary conditions for H and also using the inequality(
a2k+1 − b2k+1

)
(a− b) ≥ 2−(2k+2) (a− b)2k+2 we obtain

2−(2k+2)δ21 (y1)

∫ +∞

0

(
∂H

∂τ

)2k+2

dτ + δ22 (y1)

∫ +∞

0

(
∂H

∂τ

)2

dτ ≤ 0.

From the last inequality and from the first boundary condition for H it follows that
V

(1)
0 ≡ V (2)

0 .
From the uniqueness of the solution to the problem it follows that in the case y1 = a

and y1 = b the solution of the problem (3.4), (3.7) is predetermined by the identical zero.
We can prove that for every y1 ∈ (a, b) the solution to the problem (3.4), (3.7) in the

parametric form is as follows:

τ =
2k + 1

2k
· δ

2
1 (y1)

δ23 (y1)
·
(
t2k0 − t2k

)
+
δ22 (y1)

δ23 (y1)
ln

∣∣∣∣ t0t
∣∣∣∣ , (3.9)

V0 = − ·
δ21 (y1)

δ23 (y1)
· t2k+1 − δ22 (y1)

δ23 (y1)
· t. (3.10)

Here t is a parameter, t0 (y1) is a real root of the algebraic equation

t2k+1
0 + p (y1) t0 + q (y1) = 0,
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where

p (y1) =
δ22 (y1)

δ21 (y1)
> 0, q (y1) =

δ23 (y1)

δ21 (y1)
ψ0 (y1) , y1 ∈ (a, b) .

Using the explicit form (3.9), (3.10) of the solution of problem (3.4), (3.7) it is easy to
prove that V0 (τ, y1) and all its derivatives exponentially decay as τ → +∞.

Lemma 3.1 is proved.
We pass to the construction of functions V1, V2, . . . , Vn+1 that are the solutions of equa-

tions (3.5) satisfying boundary conditions (3.8) for j = 1, 2, . . . , n + 1, respectively. For
example, the function V1 (τ, y) is determined by the formula

V1 (τ, y1) =

{∫ τ

0
H̃ (ξ1, y1) exp

[
δ23 (y1)

∫ ξ1

0

dξ

A (ξ, y1)

]
dξ1 + ψ1 (y1)

}
×

× exp

[
−δ23 (y1)

∫ τ

0

dξ

A (ξ, y1)

]
, (3.11)

where

H̃1 (τ, y1) = −
1

A (ξ, y1)
·
∫ +∞

τ
H1 (ξ, y1) dξ, (3.12)

A (τ, y1) = (2k + 1) δ21 (y1)

(
∂V0
∂τ

)2k

+ δ22 (y1) . (3.13)

Using (3.11)-(3.13) we introduce the following estimations for V1 (τ, y1):

|V1 (τ, y1)| ≤
(
C1 + C2τ + C3τ

2
)
exp (−τ) for δ23 (y1) = δ22 (y1) , (3.14)

|V1 (τ, y1)| ≤ (C4 + C5τ) exp

[
−δ

2
3 (y1)

δ22 (y1)
τ

]
+ C6 exp

[
−δ

2
2 (y1)

δ23 (y1)
τ

]
for δ23 (y1) 6= δ22 (y1) , (3.15)

where C1, C2, C3, C4, C5, C6 are positive constants.
We now estimate ∂V1(τ,y1)

∂τ . From (3.11) we obtain the following formula

∂V1
∂τ

= − 1

A (τ, y1)
·
[∫ +∞

τ
H1 (ξ, y1) dξ + δ23 (y1)V1

]
. (3.16)

Following estimation (3.14) for V1 (τ, y1) in the case δ23 (y1) = δ22 (y1) from (3.16) we
obtain: ∣∣∣∣∂V1∂τ

∣∣∣∣ ≤ 1

δ22 (y1)

[
C7 + C8τ + δ23 (y1)

(
C9 + C10τ + C11τ

2
)]

exp (−τ) ,

where C7, C8, C9, C10, C11 are positive constants.
The estimation ∂V1(τ,y1)

∂τ for δ23 (y1) 6= δ22 (y1) will have the same form as (3.15).
We can obtain estimations for the higher order derivatives V1 (τ, y1) with respect to τ by

differentiating successively the both hand sides of (3.16) with respect to τ and taking into
account each time the estimations of the previous derivatives. This estimation also will be of
the form (3.14) or (3.15) depending on the fact that δ23 (y1) = δ22 (y1) or δ23 (y1) 6= δ22 (y1).

The estimations for mixed derivatives are obtained in the same way. In principle, the con-
struction of functions V2, V3, . . . , Vn+1 is not different from the construction of the function
V1 . All the functions Vj ; j = 0, 1, . . . , n+ 1 tend to zero as τ → +∞.
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We multiply all the functions Vj ; 0, 1, . . . , n + 1 by the smoothing multiplier and for
the obtained new functions we leave previous denotations. Note that due to the smoothing
functions V does not violate the fulfillment of the first condition from (2.5) i.e. the sum
w + V in addition to condition (3.6) satisfies the condition

(w + V )|Γ1
= 0 (3.17)

as well.
But the function V can violate the fulfillment of the second condition from (2.17) for

the sum w + V . For the condition

(w + V )|Γ4
= 0 (3.18)

to be fulfilled, it is necessary to ensure that all functions for y = a vanish, e.i.

Vj |y=a = 0; j = 0, 1, . . . , n+ 1. (3.19)

Obviously, the condition (3.19) for j = 0 is fulfilled. Assume that the functionF (x, y, u)
satisfies the condition

∂kf (ϕ2 (a) , a)

∂xk1∂yk2
= 0; k = k1 + k2; k = 0, 1, . . . , 2n+ 1, (3.20)

in the case of linear dependence of F or u and the condition

∂kF (ϕ2 (a) , a, 0)

∂xk1∂yk2∂uk3
= 0; k = k1 + k2 + k3; k = 0, 1, . . . , 2n+ 1, (3.21)

in the case of nonlinear dependence of F on u. Then condition (3.19) will be fulfilled also
for j = 1, 2, . . . , n+ 1.

Thus, the constructed sum w+V satisfies boundary conditions (3.6), (3.17), (3.18). But
this sum does not satisfy, generally speaking, the homogeneous boundary condition on Γ2.
Therefore, it is necessary to construct the boundary layer function

η = η0 + εη1 + ε2η2 + · · ·+ εn+1ηn+1, (3.22)

near the boundary Γ2 that must provide the fulfillment of the boundary condition

(w + V + η)|Γ2
= 0. (3.23)

In addition, equations from which the functions ηj ; j = 0, 1, . . . , n + 1 will be defined are
obtained from the equality

Lε,2 (w + V + η)− Lε,2 (w + V ) = 0
(
εn+1

)
(3.24)

where Lε,2 is another decomposition of the operator Lε near the boundary Γ2.
Here, exchange of variables near the boundary Γ2 is conducted by the formulas x = x,

b − y = εξ. Expanding every function wi (x; b− εξ) ; i = 0, 1, . . . , n and Vj (τ ; b− εξ) ;
j = 0, 1, . . . , n + 1 in Taylor formula, at the points (x, b) and (τ, b) from (3.24) we obtain
the following equations:

∂

∂ξ

(
∂η0
∂ξ

)2k+1

+
∂2η0
∂ξ2

+
∂η0
∂ξ

= 0, (3.25)

∂

∂ξ

[
ψ (x, ξ)

∂ηj
∂ξ

]
+
∂ηj
∂ξ

= Gj ; j = 1, 2, . . . , n+ 1. (3.26)



M.M. Sabzaliyev, I.M. Sabzaliyeva 141

Here by ψ (x, ξ) we denote the function

ψ (x, ξ) = (2k + 1)

(
∂η0
∂ξ

)2k

+ 1, (3.27)

while Gj are the known functions.
From (3.23) and from the fact that we look for ηj ; j = 0, 1, . . . , n+1 as boundary layer

type functions, we obtain the following boundary conditions for the equations (3.25), (3.26)

ηj |ξ=0 = gj (x) , lim
ξ→+∞

ηj = 0; j = 0, 1, . . . , n, (3.28)

ηn+1|ξ=0 = gn+1 (x) , lim
ξ→+∞

ηn+1 = 0, (3.29)

where gj (x) = − (wj + vj)|y=b ;j = 0, 1, . . . , n; gn+1 (x) = − Vn+1|y=b.
The construction of functions ηj will be little different from the procedure for finding

the functions Vj ; j = 0, 1, . . . , n+1. Therefore, we will not dwell on the construction of ηj
in detail.

We multiply all the functions η0, η1, . . . , ηn+1by the smoothing functions and for the
obtained new functions leave previous denotations. Due to the smoothing multipliers, the
functions ηj ; j = 0, 1, . . . , n + 1 vanish in Γ4. Therefore, it follows from (3.18) that the
sum w + V + η in addition to the condition (3.23) satisfies the condition

(w + V + η)|Γ4
= 0 (3.30)

as well.
Using vanishing of functions wi (x, y) ; i = 0, 1, . . . , n and their derivatives for x =

ϕ2 (b) = b, y = b, we obtain ηj |x=ϕ2(y)
= 0; j = 0, 1, . . . , n + 1. Hence and from (3.6)

it follows that the sum w + V + η satisfies the boundary condition

(w + V + η)|Γ3
= 0 (3.31)

as well.
Assume that F (x, y, u) satisfies the condition

∂kf (ϕ1 (b) , b)

∂xk1∂yk2
= 0; k = k1 + k2; k = 0, 1, . . . , 2n+ 1, (3.32)

when the function F depends on u linearly, and the condition

∂kF (ϕ1 (b) , b, 0)

∂xk1∂yk2∂uk3
= 0; k = k1 + k2 + k3; k = 0, 1, . . . , 2n+ 1, (3.33)

when F depends on u nonlinearly. Then all the functions ηj will vanish for x = ϕ1 (y):
ηj |x=ϕ1(y)

= 0; j = 0, 1, . . . , n+ 1.
Hence and from (3.17) it follows that the sum w+V +η in addition to boundary conditions
(3.23), (3.30), (3.31) will satisfy the boundary condition

(w + V + η)|Γ1
= 0. (3.34)

Thus, we constructed the sum ũ = w+V +η that following (3.23), (3.30), (3.31), (3.34)
satisfies the boundary condition

ũ|Γ = 0. (3.35)

Summing (2.2), (3.3), (3.24), we have that ũ satisfies the equation

Lεũ = εn+1Φ (ε, x, y) , (3.36)
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where ‖Φ (ε, x, y)‖L2(Ω) ≤ C, for any ε ∈ [0, ε0) and c > 0 is independent of ε.
Having denoted u − ũ = z, we obtain the following asymptotic expansion in a small

parameter of the problem (1.1), (1.2)

u =
n∑
i=1

εiwi +
n+1∑
j=0

εjVj +
n+1∑
j=0

εjηj + z, (3.37)

where z is a remainder term. Now we have to estimate the remainder term.

4 Estimation of the remainder term and formulation of the result

It follows from (2.1) and (3.35) that the remainder term z satisfies the boundary condition

z|Γ = 0. (4.1)

Subtracting (3.36) from (1.1), we multiply the both hand sides of the equality by z =
u− ũ and integrate the obtained expression in the domain Ω

−εp
∫∫
Ω

∂

∂x

[(
∂u

∂x

)p
−
(
∂ũ

∂x

)p]
(u− ũ) dxdy−

−εp
∫∫
Ω

∂

∂y

[(
∂u

∂y

)p
−
(
∂ũ

∂y

)p]
(u− ũ) dxdy−

−ε
∫∫
Ω

∂2z

∂x2
zdxdy − ε

∫∫
Ω

∂2z

∂y2
zdxdy +

∫∫
Ω

∂z

∂x
zdxdy +

∫∫
Ω

∂z

∂y
zdxdy+

+

∫∫
Ω

[F (x, y, u)− F (x, y, ũ)] (u− ũ) dxdy = εn+1

∫∫
Ω

Φ (ε, x, y) zdxdy. (4.2)

Transforming some terms in the left hand side of the equality (4.2) and applying the
Green formula allowing for boundary condition (4.1); using the Lagrange formula for the
difference F (x, y, u)− F (x, y, ũ) and following the condition (1.3) we have

εp
∫∫
Ω

[(
∂u
∂x

)p − (∂ũ∂x)p] (∂u∂x − ∂ũ
∂x

)
dxdy+

+εp
∫∫
Ω

[(
∂u
∂y

)p
−
(
∂ũ
∂y

)p] (
∂u
∂y −

∂ũ
∂y

)
dxdy+

+ε

∫∫
Ω

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]
dxdy + γ2

∫∫
Ω

z2dxdy ≤

≤ εn+1

∫∫
Ω

Φ (ε, x, y) zdxdy. (4.3)

Using in the left hand side of (4.3) the inequality (ap − bp) (a− b) ≥ 1
2p+1 (a− b)p+1 ,

and in the right hand side ab ≤ δ2a2 + 1
4δ2
b2, we have

εp

2p+1

∫∫
Ω

[(
∂z

∂x

)p+1

+

(
∂z

∂y

)p+1
]
dxdy + ε

∫∫
Ω

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]
dxdy+
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+
(
γ2 − δ2

) ∫∫
Ω

z2dxdy ≤ ε2(n+1) · 1

4δ2

∫∫
Ω

[Φ (ε, x, y)]2 dxdy.

Choosing δ2 so small that γ2 − δ2 = C1 > 0, we obtain the following estimation for z :

εp

2p+1

∫∫
Ω

[(
∂z

∂x

)p+1

+

(
∂z

∂y

)p+1
]
dxdy + ε

∫∫
Ω

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]
dxdy+

+C1

∫∫
Ω

z2dxdy ≤ C2ε
2(n+1), (4.4)

where C1 > 0, C2 > 0 are the constants independent of ε. The results obtained in the paper
can be generalized in the form of the following theorem.

Theorem 4.1 Assume that F (x, y, u) ∈ C2(n+1) (Ω × (−∞,+∞)) and the conditions
(1.3), (1.4) (2.7), (3.20), (3.32) are fulfilled in the case of linear dependence of F on u
and the conditions (2.8), (3.21), (3.33) in the case of nonlinear dependence of F on u.
Then, for the generalized solution of problem (1.1), (1.2) the asymptotic representation
(3.37) to valid, where the functions wi are determined by the first iteration process, Vj , ηj
are boundary layer type functions near the boundaries Γ3, Γ2 and are determined by the
appropriate iteration processes, z is a remainder term and estimation (4.4) is valid for it.
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